Когда вы говорите об Атлантическом океане, вы имеете в виду только верхний слой воды. Но что же находится под водой, на дне океана?
Давайте представим, что мы путешествуем из Нью-Йорка на восток через Атлантический океан. Вот какая картина дна нам откроется.
На протяжении около 320 км дно постепенно понижается. Оно обычно ровное, но иногда имеет V-образные долины и каньоны. Это и есть континентальный шельф, часть североамериканского континента. Так получилось, что он слишком низок, чтобы выступать над морем.
На глубине около 360 м шельф неожиданно заканчивается. Он уже больше не опускается плавно, а обрывается. Это край континента, или склон, который идет до самого дна океана.
Опускаясь вдоль этого склона, мы оказываемся на глубине около 4 км. Теперь мы пересекаем океан в самом глубоком его месте. Здесь дно океана ровное. Оно называется глубоководной равниной. Такие равнины занимают около трети площади океана и являются одним из самых ровных мест на Земле.
Если продолжать двигаться вдоль океана, то скоро мы доберемся до места подводных возвышений. Некоторые из них напоминают холмы. Это Средне-Атлантическая гряда. Где-то около середины гряды холмы становятся выше и круче, а некоторые поднимаются, как горы, на высоту около 1500 м от уровня дна. Между горами находятся глубоководные долины с ровной поверхностью. Прямо посередине гряды лежит самая большая подводная долина. Она похожа на разлом между двумя частями гряды.
Если продолжить движение к востоку, мы снова пересечем глубоководную равнину, которая плавно поднимается к континентальному шельфу у берегов Португалии. Вот такова картина дна Атлантического океана.
Давайте представим, что мы путешествуем из Нью-Йорка на восток через Атлантический океан. Вот какая картина дна нам откроется.
На протяжении около 320 км дно постепенно понижается. Оно обычно ровное, но иногда имеет V-образные долины и каньоны. Это и есть континентальный шельф, часть североамериканского континента. Так получилось, что он слишком низок, чтобы выступать над морем.
На глубине около 360 м шельф неожиданно заканчивается. Он уже больше не опускается плавно, а обрывается. Это край континента, или склон, который идет до самого дна океана.
Опускаясь вдоль этого склона, мы оказываемся на глубине около 4 км. Теперь мы пересекаем океан в самом глубоком его месте. Здесь дно океана ровное. Оно называется глубоководной равниной. Такие равнины занимают около трети площади океана и являются одним из самых ровных мест на Земле.
Если продолжать двигаться вдоль океана, то скоро мы доберемся до места подводных возвышений. Некоторые из них напоминают холмы. Это Средне-Атлантическая гряда. Где-то около середины гряды холмы становятся выше и круче, а некоторые поднимаются, как горы, на высоту около 1500 м от уровня дна. Между горами находятся глубоководные долины с ровной поверхностью. Прямо посередине гряды лежит самая большая подводная долина. Она похожа на разлом между двумя частями гряды.
Если продолжить движение к востоку, мы снова пересечем глубоководную равнину, которая плавно поднимается к континентальному шельфу у берегов Португалии. Вот такова картина дна Атлантического океана.
В море есть огромные массы воды, которые постоянно перемещаются. Их циркуляция очень сложна, так как действуют много других причин, заставляющих воду двигаться. Одна из них та, что плотная вода опускается вниз, а более легкая поднимается вверх.
Самая плотная вода в океане — холодная и соленая. Такой она становится, когда морская вода замерзает в Северном Ледовитом океане и около Антарктиды. Во льду, получающемся в результате этого замерзания, очень мало соли. Холодная соленая вода, остающаяся после образования льда, опускается в глубины моря.
Самая соленая вода в океане находится в районе тропиков. Эта вода очень теплая и поэтому не такая плотная, как холодная и менее соленая, находящаяся под ней. Она и остается на поверхности океана. Соленая вода перемещается с помощью ветров.
Иногда ветры и контуры берега соединяют двигающиеся массы воды вместе. Вода вынуждена течь быстрее, образуя течение. Течения напоминают реки в море. Наиболее известное течение — Гольфстрим, которое было открыто Бенджамином Франклином. Гольфстрим начинается в Атлантическом океане недалеко от экватора.
Постоянные ветры у экватора почти всегда дуют с востока. Они гонят теплую соленую воду мимо Карибских островов в огромный залив, образованный полуостровом Флорида и восточным побережьем Соединенных Штатов. Вода здесь накапливается, а затем течет к северу, к мысу Гаттераса.
Здесь Гольфстрим становится узким и течет быстро. Его скорость составляет несколько километров в час, Течение здесь менее 16 километров в ширину и около 550 метров в глубину. Как река на земле, Гольфстрим не течет строго прямо, а виляет вдоль океанской поверхности. Но, в отличие от реки, Гольфстрим не всегда находится в одном и том же месте, так как у него нет определенного курса.
Многие поверхностные течения, такие, как Гольфстрим, имеют под собой еще несколько течений. Они называются противотечениями. Они движутся в противоположном направлении, но по тому же пути, что и основное поверхностное течение.
Вращение Земли вокруг своей оси также оказывает влияние на формирование течений.
Самая плотная вода в океане — холодная и соленая. Такой она становится, когда морская вода замерзает в Северном Ледовитом океане и около Антарктиды. Во льду, получающемся в результате этого замерзания, очень мало соли. Холодная соленая вода, остающаяся после образования льда, опускается в глубины моря.
Самая соленая вода в океане находится в районе тропиков. Эта вода очень теплая и поэтому не такая плотная, как холодная и менее соленая, находящаяся под ней. Она и остается на поверхности океана. Соленая вода перемещается с помощью ветров.
Иногда ветры и контуры берега соединяют двигающиеся массы воды вместе. Вода вынуждена течь быстрее, образуя течение. Течения напоминают реки в море. Наиболее известное течение — Гольфстрим, которое было открыто Бенджамином Франклином. Гольфстрим начинается в Атлантическом океане недалеко от экватора.
Постоянные ветры у экватора почти всегда дуют с востока. Они гонят теплую соленую воду мимо Карибских островов в огромный залив, образованный полуостровом Флорида и восточным побережьем Соединенных Штатов. Вода здесь накапливается, а затем течет к северу, к мысу Гаттераса.
Здесь Гольфстрим становится узким и течет быстро. Его скорость составляет несколько километров в час, Течение здесь менее 16 километров в ширину и около 550 метров в глубину. Как река на земле, Гольфстрим не течет строго прямо, а виляет вдоль океанской поверхности. Но, в отличие от реки, Гольфстрим не всегда находится в одном и том же месте, так как у него нет определенного курса.
Многие поверхностные течения, такие, как Гольфстрим, имеют под собой еще несколько течений. Они называются противотечениями. Они движутся в противоположном направлении, но по тому же пути, что и основное поверхностное течение.
Вращение Земли вокруг своей оси также оказывает влияние на формирование течений.
Повсюду, где есть морская вода, можно найти и морские водоросли. Они существуют в большом разнообразии и относятся к обширной группе растений, называемых водорослями — это растения, но без листьев, стеблей, корней и цветов.
Но они притом содержат зеленый пигмент, называемый хлорофиллом. Поэтому они могут сами вырабатывать для себя пищу. Причина того, что эти растения не зеленые по цвету, в том, что хлорофилл часто поглощается другими пигментами, поэтому некоторые морские водоросли имеют коричневый или красный цвет.
В умеренной зоне наиболее распространены коричневые водоросли. Они растут в слоях между высшими точками прилива и отлива, имеют пузырчатые поплавки, которыми дети любят хлопать, раздавливая между пальцами. Эти растения прикрепляются к камням с помощью крючкообразных корешков.
Другая хорошо известная морская трава — бурая водоросль. Она имеет разные формы. В большинстве случаев это длинная, плоская, плотная, похожая на лезвие трава, которая прикреплена к камням жестким стеблем. Вдоль побережья Атлантического океана некоторые из этих водорослей достигают 6 м в длину, а гигантская бурая водоросль Тихого океана даже еще длиннее.
Эта бурая водоросль принадлежит к видам, которые используются человеком, например, для удобрения почвы, поскольку имеют высокую концентрацию углекислого калия. Они также служат источником йода.
Другой полезный вид морских водорослей называется ирландский мох. Он довольно грубый и жесткий, как кожа. Он выделяет большое количество агар-агара — бесцветного желеобразного вещества. На Востоке тонны красных морских водорослей сушатся и употребляются в пищу. Они не очень питательны, но содержат большое количество агар-агара. Их используют в качестве добавки в супы и для придания плотности другим блюдам.
Морские водоросли — это также и основной источник пищи для океанских жителей. Маленькие морские существа питаются ими и в свою очередь становятся пищей для больших. Морские водоросли выделяют кислород, и это помогает поддерживать чистоту воды.
Итак, вы видите, почему морские водоросли считаются полезными для человека.
Но они притом содержат зеленый пигмент, называемый хлорофиллом. Поэтому они могут сами вырабатывать для себя пищу. Причина того, что эти растения не зеленые по цвету, в том, что хлорофилл часто поглощается другими пигментами, поэтому некоторые морские водоросли имеют коричневый или красный цвет.
В умеренной зоне наиболее распространены коричневые водоросли. Они растут в слоях между высшими точками прилива и отлива, имеют пузырчатые поплавки, которыми дети любят хлопать, раздавливая между пальцами. Эти растения прикрепляются к камням с помощью крючкообразных корешков.
Другая хорошо известная морская трава — бурая водоросль. Она имеет разные формы. В большинстве случаев это длинная, плоская, плотная, похожая на лезвие трава, которая прикреплена к камням жестким стеблем. Вдоль побережья Атлантического океана некоторые из этих водорослей достигают 6 м в длину, а гигантская бурая водоросль Тихого океана даже еще длиннее.
Эта бурая водоросль принадлежит к видам, которые используются человеком, например, для удобрения почвы, поскольку имеют высокую концентрацию углекислого калия. Они также служат источником йода.
Другой полезный вид морских водорослей называется ирландский мох. Он довольно грубый и жесткий, как кожа. Он выделяет большое количество агар-агара — бесцветного желеобразного вещества. На Востоке тонны красных морских водорослей сушатся и употребляются в пищу. Они не очень питательны, но содержат большое количество агар-агара. Их используют в качестве добавки в супы и для придания плотности другим блюдам.
Морские водоросли — это также и основной источник пищи для океанских жителей. Маленькие морские существа питаются ими и в свою очередь становятся пищей для больших. Морские водоросли выделяют кислород, и это помогает поддерживать чистоту воды.
Итак, вы видите, почему морские водоросли считаются полезными для человека.
Слово «планктон» происходит от греческого слова, которое обозначает «блуждающий», «плывущий по течению». Планктон — это плавающая живая масса, состоящая из миллиардов крошечных живых организмов.
Некоторые из этих организмов, такие, как крошечные зеленые растения, всегда остаются планктоном. Другие, такие, как рыбы, омары, составляют планктон, пока они находятся в стадии зародышевого развития. Иногда в составе планктона попадаются большие медузы или такие маленькие существа, которые даже нельзя разглядеть через обычный микроскоп. Но весь планктон может держаться на плаву и жить вместе, дрейфуя по течению.
Самые маленькие организмы планктона — это одноклеточные растения, микроскопические морские водоросли. Одна из наиболее многочисленных разновидностей таких водорослей называется диатомовая, или кремневая. В двух литрах воды их может быть до миллиона.
Животная жизнь планктона довольно интересна. Один из ее видов — грушевидный копепод (копепод означает «веслоногий рачок»). Копепод плавает очень быстро, делая резкие, толчковые движения своими крошечными лапками, как бы гребя на веслах. Самый большой копепод менее 13 мм длиной.
Молодые моллюски разных видов также составляют планктон. Среди них — креветки, крабы, омары и морские уточки (тип ракообразных), живущие в соленой воде, а также лангусты и водяные блохи — жители пресноводья. Личинки, или развивающиеся молодые особи, этих моллюсков — крошечные, микроскопические и на этом этапе развития не могут передвигаться самостоятельно, поэтому и дрейфуют вместе с другим планктоном.
Точно так же ведут себя и другие моллюски, такие, как улитки, мидии. Они являются частью планктона на первой стадии своего развития. Планктон может включать в себя яйца насекомых и личинки многих рыб.
В свежей воде в состав планктона часто входят развивающиеся насекомые. Мухи-однодневки, стрекозы, водяные жуки и многие другие насекомые откладывают яйца в воду. Когда личинки вылупляются из гнезда, они живут и питаются растениями планктона.
Это только часть того, что составляет планктон. Вы видите, сколько животных и растений входит в него и как интересно их изучать
Некоторые из этих организмов, такие, как крошечные зеленые растения, всегда остаются планктоном. Другие, такие, как рыбы, омары, составляют планктон, пока они находятся в стадии зародышевого развития. Иногда в составе планктона попадаются большие медузы или такие маленькие существа, которые даже нельзя разглядеть через обычный микроскоп. Но весь планктон может держаться на плаву и жить вместе, дрейфуя по течению.
Самые маленькие организмы планктона — это одноклеточные растения, микроскопические морские водоросли. Одна из наиболее многочисленных разновидностей таких водорослей называется диатомовая, или кремневая. В двух литрах воды их может быть до миллиона.
Животная жизнь планктона довольно интересна. Один из ее видов — грушевидный копепод (копепод означает «веслоногий рачок»). Копепод плавает очень быстро, делая резкие, толчковые движения своими крошечными лапками, как бы гребя на веслах. Самый большой копепод менее 13 мм длиной.
Молодые моллюски разных видов также составляют планктон. Среди них — креветки, крабы, омары и морские уточки (тип ракообразных), живущие в соленой воде, а также лангусты и водяные блохи — жители пресноводья. Личинки, или развивающиеся молодые особи, этих моллюсков — крошечные, микроскопические и на этом этапе развития не могут передвигаться самостоятельно, поэтому и дрейфуют вместе с другим планктоном.
Точно так же ведут себя и другие моллюски, такие, как улитки, мидии. Они являются частью планктона на первой стадии своего развития. Планктон может включать в себя яйца насекомых и личинки многих рыб.
В свежей воде в состав планктона часто входят развивающиеся насекомые. Мухи-однодневки, стрекозы, водяные жуки и многие другие насекомые откладывают яйца в воду. Когда личинки вылупляются из гнезда, они живут и питаются растениями планктона.
Это только часть того, что составляет планктон. Вы видите, сколько животных и растений входит в него и как интересно их изучать
Если вы когда-нибудь гуляли по пляжу, то, вероятно, видели морские ракушки, лежащие на песке, куда они были выброшены волнами. Такие ракушки почти всегда пусты — это бывшее жилище некоторых умерших морских животных.
Между прочим, ракушки находят и в лесистой местности, и в реках, и в прудах. Когда люди говорят о ракушках, они обычно имеют в виду мягкотелых животных, известных под названием «моллюски».
Большинство моллюсков имеют раковину, защищающую их мягкое тело. Раковина — это скелет моллюска. Это часть животного, и моллюск прикреплен к ней мускулами. Мягкий моллюск внутри никогда не покидает своего «дома».
Раковина сделана из известняка самим моллюском. Определенные его железы могут забирать известняк из воды и откладывать его мельчайшие частички на краях или вдоль внутренней части раковины. Поскольку моллюск внутри растет, то и раковина увеличивается в размерах. Вы можете видеть линии роста, которые отмечены рубчиками (утолщениями), идущими параллельно внешнему краю раковины. Вы, вероятно, замечали такие линии роста на раковинах устриц. Появление других рубчиков вызвано рубчиками на «мантии» моллюска или мускулами его тела.
Раковина моллюска состоит из трех слоев. Внешний покрыт слоем рогового вещества, в составе которого нет извести. Под ним — слой карбоната кальция. Внутренний слой — «мать жемчуга», или перламутр. Он состоит из очень тонкого слоя карбоната кальция и рогового вещества.
Окраска раковины зависит от цвета вещества выделяемого некоторыми железами моллюска. Поэтому ракушка может быть в крапинку, одноцветной или раскрашенной полосками и линиями. Некоторые ракушки такие крошечные, что их можно разглядеть только через увеличительное стекло, в то же время гигантский морской моллюск может быть до метра длиной.
Между прочим, ракушки находят и в лесистой местности, и в реках, и в прудах. Когда люди говорят о ракушках, они обычно имеют в виду мягкотелых животных, известных под названием «моллюски».
Большинство моллюсков имеют раковину, защищающую их мягкое тело. Раковина — это скелет моллюска. Это часть животного, и моллюск прикреплен к ней мускулами. Мягкий моллюск внутри никогда не покидает своего «дома».
Раковина сделана из известняка самим моллюском. Определенные его железы могут забирать известняк из воды и откладывать его мельчайшие частички на краях или вдоль внутренней части раковины. Поскольку моллюск внутри растет, то и раковина увеличивается в размерах. Вы можете видеть линии роста, которые отмечены рубчиками (утолщениями), идущими параллельно внешнему краю раковины. Вы, вероятно, замечали такие линии роста на раковинах устриц. Появление других рубчиков вызвано рубчиками на «мантии» моллюска или мускулами его тела.
Раковина моллюска состоит из трех слоев. Внешний покрыт слоем рогового вещества, в составе которого нет извести. Под ним — слой карбоната кальция. Внутренний слой — «мать жемчуга», или перламутр. Он состоит из очень тонкого слоя карбоната кальция и рогового вещества.
Окраска раковины зависит от цвета вещества выделяемого некоторыми железами моллюска. Поэтому ракушка может быть в крапинку, одноцветной или раскрашенной полосками и линиями. Некоторые ракушки такие крошечные, что их можно разглядеть только через увеличительное стекло, в то же время гигантский морской моллюск может быть до метра длиной.
Давайте сначала выясним, что такое коралл. Кусок коралла — это спрессованные скелеты крошечных морских животных, которые называются «коралловые полипы».
Скелет полипа растет снаружи его тела. Он по форме похож на чашу, служит для поддержания и защиты тела полипа и растет вместе с организмом. Когда полип умирает, его скелет остается. Коралловые рифы и острова создаются из миллиардов и миллиардов таких крошечных скелетов.
Колония кораллов состоит из живых кораллов. Каждый из них прикреплен к основе — к скале, например, или скелетам более ранних поколений кораллов. Колонии кораллов можно найти во всех морях, но кораллы, из которых создаются рифы, обитают только в теплых, чистых, мелких водах. Глубина около 45 метров — самая лучшая для них, хотя в некоторых районах мира коралловые рифы поднимаются с огромных океанских глубин. Загадка, как образуются коралловые рифы, была разгадана знаменитым естествоиспытателем Чарльзом Дарвином.
Дарвин знал, что земная поверхность изменяется. В одних местах возникают горы, в других земная кора опускается. Когда он изучал коралловые рифы, то заметил, что их можно разделить на три вида: окаймляющие рифы, барьерные рифы и атоллы (то есть коралловые кольца). Обобщив всю эту информацию, он предложил следующую теорию.
Вулканический остров образуется там, где подводный вулкан поднимается над поверхностью воды. В мелководье вокруг острова кораллы образуют окаймляющий риф. Со временем вулкан затихает, остывает и начинает погружаться в море. В результате окаймляющий риф отделяется от острова широким каналом воды и, постепенно разрастаясь, превращается в барьерный риф.
Если же вулкан погружается в воду полностью и исчезает, на поверхности остается только коралловый риф. Теперь он называется атолл, или кольцо кораллов, окружающих лагуну. К тому же сегодня мы знаем, что берега острова могут затопляться и подниматься так же, как может подниматься и опускаться уровень океана. Все эти изменения помогают объяснить причины возникновения коралловых рифов.
Скелет полипа растет снаружи его тела. Он по форме похож на чашу, служит для поддержания и защиты тела полипа и растет вместе с организмом. Когда полип умирает, его скелет остается. Коралловые рифы и острова создаются из миллиардов и миллиардов таких крошечных скелетов.
Колония кораллов состоит из живых кораллов. Каждый из них прикреплен к основе — к скале, например, или скелетам более ранних поколений кораллов. Колонии кораллов можно найти во всех морях, но кораллы, из которых создаются рифы, обитают только в теплых, чистых, мелких водах. Глубина около 45 метров — самая лучшая для них, хотя в некоторых районах мира коралловые рифы поднимаются с огромных океанских глубин. Загадка, как образуются коралловые рифы, была разгадана знаменитым естествоиспытателем Чарльзом Дарвином.
Дарвин знал, что земная поверхность изменяется. В одних местах возникают горы, в других земная кора опускается. Когда он изучал коралловые рифы, то заметил, что их можно разделить на три вида: окаймляющие рифы, барьерные рифы и атоллы (то есть коралловые кольца). Обобщив всю эту информацию, он предложил следующую теорию.
Вулканический остров образуется там, где подводный вулкан поднимается над поверхностью воды. В мелководье вокруг острова кораллы образуют окаймляющий риф. Со временем вулкан затихает, остывает и начинает погружаться в море. В результате окаймляющий риф отделяется от острова широким каналом воды и, постепенно разрастаясь, превращается в барьерный риф.
Если же вулкан погружается в воду полностью и исчезает, на поверхности остается только коралловый риф. Теперь он называется атолл, или кольцо кораллов, окружающих лагуну. К тому же сегодня мы знаем, что берега острова могут затопляться и подниматься так же, как может подниматься и опускаться уровень океана. Все эти изменения помогают объяснить причины возникновения коралловых рифов.
Алюминий — это металл, который чаще всего встречается в земной коре: он составляет 7—8 процентов земной коры. Но алюминий не существует в природе в чистом виде. Он находится в соединении с другими химическими элементами, состав которых очень трудно разложить. Наиболее важная алюминиевая руда — это боксит, разновидность глины. Он содержит от 40 до 60 процентов окиси алюминия.
Алюминий имеет ряд качеств, которые делают его полезным для многих изделий. Алюминий — легкий, весит втрое меньше таких металлов, как железо, медь, никель, цинк. Алюминий хорошо проводит электричество, а также хороший тепловой проводник, поэтому в технике его часто используют в радиаторах систем охлаждения. Алюминий сопротивляется коррозии: когда он находится на воздухе, то сразу же вступает в реакцию с кислородом, образуя тонкую, прочную бесцветную пленку, которая защищает металл от дальнейшего химического воздействия, предотвращая коррозию.
По этим и другим причинам алюминий используется при изготовлении фольги. Фольга — это слой любого металла, толщиной около 0,127 мм или меньше. И чтобы раскатать металл до такой толщины, необходимы механизмы с огромной точностью. Даже самые небольшие изменения толщины выделяются на фольге. Различные виды прокатных станов изобретены для раскатки алюминия и других металлов, где нужна точная толщина.
Алюминий так податлив, что может быть раскатан в листы фольги толщиной 0,005—0,008 мм. Для этого используется чистый алюминий. Но в основном и для большей крепости фольги используются алюминиевые сплавы. В данном случае другие металлы соединяются с алюминием.
Алюминиевая фольга, которая используется дома, устойчива к влаге и газу, предохраняет от жира, она не имеет запаха и вкуса, устойчива к коррозии, отражает тепло и не пропускает свет.
Алюминий имеет ряд качеств, которые делают его полезным для многих изделий. Алюминий — легкий, весит втрое меньше таких металлов, как железо, медь, никель, цинк. Алюминий хорошо проводит электричество, а также хороший тепловой проводник, поэтому в технике его часто используют в радиаторах систем охлаждения. Алюминий сопротивляется коррозии: когда он находится на воздухе, то сразу же вступает в реакцию с кислородом, образуя тонкую, прочную бесцветную пленку, которая защищает металл от дальнейшего химического воздействия, предотвращая коррозию.
По этим и другим причинам алюминий используется при изготовлении фольги. Фольга — это слой любого металла, толщиной около 0,127 мм или меньше. И чтобы раскатать металл до такой толщины, необходимы механизмы с огромной точностью. Даже самые небольшие изменения толщины выделяются на фольге. Различные виды прокатных станов изобретены для раскатки алюминия и других металлов, где нужна точная толщина.
Алюминий так податлив, что может быть раскатан в листы фольги толщиной 0,005—0,008 мм. Для этого используется чистый алюминий. Но в основном и для большей крепости фольги используются алюминиевые сплавы. В данном случае другие металлы соединяются с алюминием.
Алюминиевая фольга, которая используется дома, устойчива к влаге и газу, предохраняет от жира, она не имеет запаха и вкуса, устойчива к коррозии, отражает тепло и не пропускает свет.
Во-первых, сплав — это металл, который получается в результате смешивания нескольких металлов при плавке. Основой оловянно-свинцового сплава является олово. Оно обычно смешивается со свинцом в следующих пропорциях: 6 или 4 части олова на 1 часть свинца.
Такой сплав получали в течение тысяч лет, хотя трудно назвать более точную дату. Говорят, что он был известен древним китайцам, египтянам и грекам. Древние римляне также изготовляли его.
Обычно упоминание об оловянно-свинцовом сплаве ассоциируется с Англией, и для этого есть своя причина. В Корнуолле были шахты с залежами высококачественного олова. Англия выплавляла его с древних времен, и олово из Корнуолла использовалось для изготовления таких сплавов в других частях Европы.
Оловянно-свинцовый сплав использовался для трех основных целей: для изготовления церковной посуды, для домашних и для общественных нужд. Чаши для причастия, сделанные из оловянно-свинцового сплава, использовались в церковных службах в Англии со средних веков.
В Англии же этот сплав стал широко использоваться и для изготовления тарелок и чашек. Но со временем богатые стали предпочитать посуду из серебра, а средние классы использовали оловянно-свинцовый сплав вместо серебра.
Во Франции такой сплав использовался для изготовления бокалов и кубков, тарелок, солонок и кастрюль начиная с XIV века.
В Германии промышленное производство оловянно-свинцового сплава возникло в XIV веке, и почти в то же время его стали выплавлять в Бельгии, Голландии, Швейцарии, России и скандинавских странах.
В Соединенных Штатах в ранний колониальный период его больше применяли для домашних нужд. Некоторые изделия относятся к XVII веку, но наибольшее количество сплава производилось между 1750 и 1850 годами, когда он шел на изготовление любой домашней утвари.
Оловянно-свинцовый сплав выплавляли в Китае, Корее и в Японии более 1000 лет тому назад.
Такой сплав получали в течение тысяч лет, хотя трудно назвать более точную дату. Говорят, что он был известен древним китайцам, египтянам и грекам. Древние римляне также изготовляли его.
Обычно упоминание об оловянно-свинцовом сплаве ассоциируется с Англией, и для этого есть своя причина. В Корнуолле были шахты с залежами высококачественного олова. Англия выплавляла его с древних времен, и олово из Корнуолла использовалось для изготовления таких сплавов в других частях Европы.
Оловянно-свинцовый сплав использовался для трех основных целей: для изготовления церковной посуды, для домашних и для общественных нужд. Чаши для причастия, сделанные из оловянно-свинцового сплава, использовались в церковных службах в Англии со средних веков.
В Англии же этот сплав стал широко использоваться и для изготовления тарелок и чашек. Но со временем богатые стали предпочитать посуду из серебра, а средние классы использовали оловянно-свинцовый сплав вместо серебра.
Во Франции такой сплав использовался для изготовления бокалов и кубков, тарелок, солонок и кастрюль начиная с XIV века.
В Германии промышленное производство оловянно-свинцового сплава возникло в XIV веке, и почти в то же время его стали выплавлять в Бельгии, Голландии, Швейцарии, России и скандинавских странах.
В Соединенных Штатах в ранний колониальный период его больше применяли для домашних нужд. Некоторые изделия относятся к XVII веку, но наибольшее количество сплава производилось между 1750 и 1850 годами, когда он шел на изготовление любой домашней утвари.
Оловянно-свинцовый сплав выплавляли в Китае, Корее и в Японии более 1000 лет тому назад.
Хром — это металл. Он твердый и ломкий и очень устойчив к коррозии. Он серебристо-белый, а после полировки приобретает блеск. Он плохо проводит электричество и тепло.
Хром нельзя обнаружить в природе в виде металла. Он содержится в нескольких минералах, большинство их ярко окрашены, но хром выделяют лишь из одного минерала. Это тяжелый черный минерал, называемый хромитом. Самые большие месторождения этого минерала обнаружены в Южной Африке, в России, на Филиппинах и в Зимбабве.
Многие из нас знают хром только потому, что он используется как блестящее покрытие на автомобильных бамперах и других металлических предметах. Но в действительности самое важное использование хрома — это стальные сплавы. При добавлении небольшого количества хрома сталь становится крепче, тверже и более устойчивой к коррозии.
Хром — важная часть нержавеющей стали, так как нержавеющая сталь широко используется там, где необходима устойчивость против коррозии. Например, нержавеющая сталь с хромом используется для изготовления ножей, вилок, ложек, кастрюль, кухонных раковин, прилавков, инструментов, молочного оборудования и даже хирургических инструментов.
Хром используется для нанесения блестящего покрытия на металлические предметы. Это покрытие получается в процессе, называемом гальванопокрытием. Хромированное покрытие вначале использовалось для украшения и защиты часов, ювелирных изделий и домашней утвари. Изготовители машин начали делать его на бамперах и во внутренней отделке примерно с 1925 года. В наши дни хромирование используется прежде всего в автомобильной промышленности.
Части машин, которые сильнее всего изнашиваются и подвергаются трению, такие, как передаточные механизмы и поддерживающие поверхности, часто покрывают хромом. Такие покрытые хромом движущиеся части могут работать без смазки маслом.
Хромовые соли используются для дубления кожи и окрашивания ткани. Многие ярко окрашенные составные части хрома используются в красках. Итак, вы видите, что хром — один из самых полезных для человека металлов.
Хром нельзя обнаружить в природе в виде металла. Он содержится в нескольких минералах, большинство их ярко окрашены, но хром выделяют лишь из одного минерала. Это тяжелый черный минерал, называемый хромитом. Самые большие месторождения этого минерала обнаружены в Южной Африке, в России, на Филиппинах и в Зимбабве.
Многие из нас знают хром только потому, что он используется как блестящее покрытие на автомобильных бамперах и других металлических предметах. Но в действительности самое важное использование хрома — это стальные сплавы. При добавлении небольшого количества хрома сталь становится крепче, тверже и более устойчивой к коррозии.
Хром — важная часть нержавеющей стали, так как нержавеющая сталь широко используется там, где необходима устойчивость против коррозии. Например, нержавеющая сталь с хромом используется для изготовления ножей, вилок, ложек, кастрюль, кухонных раковин, прилавков, инструментов, молочного оборудования и даже хирургических инструментов.
Хром используется для нанесения блестящего покрытия на металлические предметы. Это покрытие получается в процессе, называемом гальванопокрытием. Хромированное покрытие вначале использовалось для украшения и защиты часов, ювелирных изделий и домашней утвари. Изготовители машин начали делать его на бамперах и во внутренней отделке примерно с 1925 года. В наши дни хромирование используется прежде всего в автомобильной промышленности.
Части машин, которые сильнее всего изнашиваются и подвергаются трению, такие, как передаточные механизмы и поддерживающие поверхности, часто покрывают хромом. Такие покрытые хромом движущиеся части могут работать без смазки маслом.
Хромовые соли используются для дубления кожи и окрашивания ткани. Многие ярко окрашенные составные части хрома используются в красках. Итак, вы видите, что хром — один из самых полезных для человека металлов.
Уран — это металл с таинственными свойствами. Он дает человеку ключ, который открывает потрясающую энергию атома. Природная радиоактивность урана лежит в основе широкого, порой удивительного использования его в медицине, сельском хозяйстве, промышленности и биологии.
Кусочек чистого урана выглядит так же, как кусок серебра или стали. Но он удивительно тяжел для своего размера. 0,3 м3 урана весит больше полутонны. Уран — самый тяжелый элемент, найденный в природе.
Уран имеет две необычные особенности. Это радиоактивность, которая означает, что его атомы медленно разрушаются, выделяя энергию в виде радиации. Некоторые из его атомов способны к ядерному распаду, то есть они могут взрываться и делиться на две части, выделяя огромное количество энергии. Расщепление урана — это основа атомных станций и ядерного оружия.
Химически уран очень активен. Кусочек урана, подвергнутый действию воздуха, быстро приобретает черноватую оболочку. Эта оболочка — соединение урана и кислорода воздуха. Уран также образует важные соединения с многими другими элементами.
Уран широко распространен в маленьких количествах, но ни разу не обнаружен в природе в чистом виде. Выделение урана из руд — очень долгий и сложный процесс.
Заводы обрабатывают сотни тонн руды в день, но из каждой тонны получают лишь несколько килограммов урана.
Вначале руду измельчают и просеивают. Затем ее подвергают воздействию различных химикатов, чтобы очистить от загрязнения. Затем руда проходит через много очищающих процессов, пока не останется яркое, похожее на глину вещество, называемое «желтый торт». Эта хорошо очищенная форма урана подвергается дальнейшей очистке, чтобы только маленькая фракция природного урана могла расщепляться.
Килограмм урана содержит столько же энергии, сколько ее содержит 3 миллиона килограммов угля! В ядерных реакторах разрушаемые атомы урана выделяют огромное количество тепла, так как происходит цепная реакция. Это тепло может быть использовано для вращения турбины, которая управляет электрическим генератором.
Кусочек чистого урана выглядит так же, как кусок серебра или стали. Но он удивительно тяжел для своего размера. 0,3 м3 урана весит больше полутонны. Уран — самый тяжелый элемент, найденный в природе.
Уран имеет две необычные особенности. Это радиоактивность, которая означает, что его атомы медленно разрушаются, выделяя энергию в виде радиации. Некоторые из его атомов способны к ядерному распаду, то есть они могут взрываться и делиться на две части, выделяя огромное количество энергии. Расщепление урана — это основа атомных станций и ядерного оружия.
Химически уран очень активен. Кусочек урана, подвергнутый действию воздуха, быстро приобретает черноватую оболочку. Эта оболочка — соединение урана и кислорода воздуха. Уран также образует важные соединения с многими другими элементами.
Уран широко распространен в маленьких количествах, но ни разу не обнаружен в природе в чистом виде. Выделение урана из руд — очень долгий и сложный процесс.
Заводы обрабатывают сотни тонн руды в день, но из каждой тонны получают лишь несколько килограммов урана.
Вначале руду измельчают и просеивают. Затем ее подвергают воздействию различных химикатов, чтобы очистить от загрязнения. Затем руда проходит через много очищающих процессов, пока не останется яркое, похожее на глину вещество, называемое «желтый торт». Эта хорошо очищенная форма урана подвергается дальнейшей очистке, чтобы только маленькая фракция природного урана могла расщепляться.
Килограмм урана содержит столько же энергии, сколько ее содержит 3 миллиона килограммов угля! В ядерных реакторах разрушаемые атомы урана выделяют огромное количество тепла, так как происходит цепная реакция. Это тепло может быть использовано для вращения турбины, которая управляет электрическим генератором.
Есть три причины, почему люди всегда ценили золото: красота, химическая инертность и редкость. Если бы железо было бы таким редким, как золото, оно, вероятно, ценилось бы так же высоко.
Золото — мягкий, желтый металл. Это один из самых тяжелых химических элементов. 200 см3 этого металла весит более 540 кг. Золото — один из наиболее легкообрабатываемых металлов. Золото легко приобретает любую форму: один грамм золота можно превратить в пластинку площадью почти 2 м2.
В отличие от других металлов, золото не тускнеет на воздухе. (Вы знаете, что происходит с серебром, например, когда оно долго лежит открытым.) Золото остается ярким и не теряет свой блеск. И, вероятно, это первая причина, почему люди высоко ценили золото. Золото также является одним из наименее химически активных металлов. Оно вступает реакцию лишь с несколькими кислотами.
Золото всегда использовали в качестве денег. Хотя чеканились монеты и из других металлов, их ценность всегда была под сомнением, а ценность золотых монет — никогда.
До 1914 года золотом измеряли почти всю валюту в мире. Это означает, что доллары США, франки Франции, марки Германии и т.д. имели установленную цену в соотношении к золоту. В любое время валюту можно было поменять на золото. Эту систему называли золотой стандарт, и хотя она уже не используется, но золото до сих пор играет важную роль в международной торговле. Золото используется как резерв, который обеспечивает внешнюю торговлю страны.
Золото используется повсеместно. Около 10 процентов золота, производимого каждый год, используется ювелирами. Золото используется в стоматологии. Так как золото хорошо проводит электричество, оно используется в определенных типах электрических контактов.
Редкость золота поддерживает его цену. Сегодня чуть больше половины добываемого золота идет из Южной Африки. Самые богатые месторождения золота в мире были обнаружены там в 1886 году.
Золото — мягкий, желтый металл. Это один из самых тяжелых химических элементов. 200 см3 этого металла весит более 540 кг. Золото — один из наиболее легкообрабатываемых металлов. Золото легко приобретает любую форму: один грамм золота можно превратить в пластинку площадью почти 2 м2.
В отличие от других металлов, золото не тускнеет на воздухе. (Вы знаете, что происходит с серебром, например, когда оно долго лежит открытым.) Золото остается ярким и не теряет свой блеск. И, вероятно, это первая причина, почему люди высоко ценили золото. Золото также является одним из наименее химически активных металлов. Оно вступает реакцию лишь с несколькими кислотами.
Золото всегда использовали в качестве денег. Хотя чеканились монеты и из других металлов, их ценность всегда была под сомнением, а ценность золотых монет — никогда.
До 1914 года золотом измеряли почти всю валюту в мире. Это означает, что доллары США, франки Франции, марки Германии и т.д. имели установленную цену в соотношении к золоту. В любое время валюту можно было поменять на золото. Эту систему называли золотой стандарт, и хотя она уже не используется, но золото до сих пор играет важную роль в международной торговле. Золото используется как резерв, который обеспечивает внешнюю торговлю страны.
Золото используется повсеместно. Около 10 процентов золота, производимого каждый год, используется ювелирами. Золото используется в стоматологии. Так как золото хорошо проводит электричество, оно используется в определенных типах электрических контактов.
Редкость золота поддерживает его цену. Сегодня чуть больше половины добываемого золота идет из Южной Африки. Самые богатые месторождения золота в мире были обнаружены там в 1886 году.
Вероятно, первым металлом, который узнал человек, было золото. По тому, как оно встречается в природе, человек узнал о нем и оценил его задолго до исторических времен. Как же находят золото?
Хотя золото считается ценным и редким, его много в природе. Беда в том, что в большинстве случаев месторождение золота невыгодно для разработки, потому что в нем недостаточно металла. Например, морская вода содержит небольшое количество золота. Но его так мало, что никто не знает, как выделить золото из воды. Но в океанах так много воды, что общее количество золота в них могло бы составить десять миллиардов тонн.
Золото встречается в двух формах: самородное, что означает, что оно не имеет примесей других минералов; и соединенное с рудами других металлов. Самородное золото чаще всего встречается в кварцевых жилах или в пластах железного колчедана.
Иногда кварц или колчедан подвергаются действию воды и ветра. Частички камней, окружающие крупинки золота, отмываются, раскрывая крупинки и самородки чистого золота.
Самородки постепенно вымываются на дно долин и смешиваются с песком и гравием. Такое золото называется «наносным» или «рассыпным». Когда человек впервые обнаружил золото, оно было рассыпным. Частички золота имеют разную величину — от крошечных пылинок до больших самородков, таких, как найденный в Австралии самородок «Желанный незнакомец», имеющий вес около 70 кг.
Золото часто находят в рудах других металлов. Серебро почти всегда содержит частички золота. Медные руды тоже часто находятся в соединении с золотом.
Сегодня золото добывается теми же способами, что и другие металлы. Глубокая яма, называемая шахтой, прорывается вглубь земли к залежам золота. Она может быть больше километра в глубину! Затем руда взрывается, грузится на тележки, подвозится к стволу шахты и поднимается на поверхность. Она измельчается до мелкого песка, называемого пульпой, и далее химическим воздействием золото отделяется от другого вещества.
Три основные золотодобывающие страны мира — это Южная Африка, Россия и Соединенные Штаты.
Хотя золото считается ценным и редким, его много в природе. Беда в том, что в большинстве случаев месторождение золота невыгодно для разработки, потому что в нем недостаточно металла. Например, морская вода содержит небольшое количество золота. Но его так мало, что никто не знает, как выделить золото из воды. Но в океанах так много воды, что общее количество золота в них могло бы составить десять миллиардов тонн.
Золото встречается в двух формах: самородное, что означает, что оно не имеет примесей других минералов; и соединенное с рудами других металлов. Самородное золото чаще всего встречается в кварцевых жилах или в пластах железного колчедана.
Иногда кварц или колчедан подвергаются действию воды и ветра. Частички камней, окружающие крупинки золота, отмываются, раскрывая крупинки и самородки чистого золота.
Самородки постепенно вымываются на дно долин и смешиваются с песком и гравием. Такое золото называется «наносным» или «рассыпным». Когда человек впервые обнаружил золото, оно было рассыпным. Частички золота имеют разную величину — от крошечных пылинок до больших самородков, таких, как найденный в Австралии самородок «Желанный незнакомец», имеющий вес около 70 кг.
Золото часто находят в рудах других металлов. Серебро почти всегда содержит частички золота. Медные руды тоже часто находятся в соединении с золотом.
Сегодня золото добывается теми же способами, что и другие металлы. Глубокая яма, называемая шахтой, прорывается вглубь земли к залежам золота. Она может быть больше километра в глубину! Затем руда взрывается, грузится на тележки, подвозится к стволу шахты и поднимается на поверхность. Она измельчается до мелкого песка, называемого пульпой, и далее химическим воздействием золото отделяется от другого вещества.
Три основные золотодобывающие страны мира — это Южная Африка, Россия и Соединенные Штаты.