Приготовление сахара в XVI в. Старинная гравюра.
В бескрайнем мире органических веществ есть соединения, о которых можно сказать, что они состоят из углерода и воды, т. е. имеют формулу Сn(Н2О)m. Они так и называются — углеводы.
Простейшие углеводы (моносахариды) с химической точки зрения представляют собой органические соединения, содержащие гидроксильные и карбонильные группы (альдегидоспирты, кетоспирты).
Из этих групп, как из отдельных звеньев, построены более сложные молекулы: дисахариды (с двумя моносахаридными фрагментами) и полисахариды (в их молекулах таких фрагментов больше двух). Состав дисахаридов и полисахаридов уже нельзя выразить формулой Cn(Н2О)m, однако по традиции их тоже относят к углеводам. Поскольку многие из них на вкус сладкие, этот класс веществ называют ещё и сахарами.
Главная составная часть шоколада — масло, которое выделяют из какао-бобов. Плоды этого диковинного дерева были завезены в Европу из Америки Христофором Колумбом. Ацтеки использовали их для приготовления особого напитка «чокоатль» («горькой воды»), отсюда и название «шоколад». Его употребляли в пишу с перцем. Испанские кондитеры уже в XVII в. научились готовить и какао, и шоколад.
Сегодня плантации какао можно встретить не только в Америке, но также в Африке и Азии. Технология переработки плодов достаточно трудоёмка. Сначала высушенные на солнце какао-бобы очищают — полируют специальными машинами или ступнями ног (у народов островов Атлантического океана эта процедура получила название «танец какао»). В мельницах бобы истирают в порошок и прессуют его — так выделяют какао-масло. В среднем какао-бобы содержат 53—57% масла. Остаток от прессования, содержащий около 20 % масла, перерабатывают в какао-порошок. Полученное какао-масло очищают и используют для производства шоколада.
Роль жиров в питании часто представляют однобоко, считая их только поставщиками энергии. Однако они выполняют и другие функции. Жиры служат теплоизолятором, входят в состав клеточных компонентов, в том числе мембран, используются для синтеза очень важных для организма соединений — простагландинов, которые принимают участие чуть ли ни во всех биологических процессах. Употребление пищи без жира ведёт к нарушениям деятельности центральной нервной системы, ослаблению иммунитета.
Жиры содержатся практически в любом продукте питания. В небольшом количестве они есть даже в картофеле (0,4%) и хлебе (1—2%). В молоке обычно 2—3% жира, если оно специально не обезжирено, а вот в постном мясе — до 33%. Всё это так называемый скрытый жир, присутствующий в продукте в виде отдельных мельчайших частиц. К жирам же почти в «чистом виде» относятся сало, сливочное и растительное масло, маргарин.
При длительном хранении жиры портятся — прогоркают: под действием воздуха, света, микроорганизмов образуются свободные жирные кислоты и продукты их превращения, обычно с очень неприятным запахом и вкусом. Срок годности увеличивается при низкой температуре и в присутствии консервантов — чаще всего это поваренная соль.
Физиологи установили, что при физической нагрузке, которая в 10 раз превышает привычную, человек, соблюдающий жировую диету, лишается сил уже через полтора часа. А вот углеводная диета позволяет выдержать такую же нагрузку в течение четырёх часов. Оказывается, получение организмом энергии из жиров — процесс длительный. Это объясняется малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы же, хотя и дают меньше энергии, чем жиры, однако выделяют её намного быстрее. Поэтому, если предстоит основательная физическая нагрузка, предпочтительнее подкрепиться сладким, а не жирным.
Известно, что верблюд в состоянии прожить без питья до полутора месяцев. Воду в это время он «добывает» за счёт постепенного окисления содержащихся в горбах запасов жира, которые могут достигать 120 кг. Если считать, что жир состоит из эфира глицерина и самой распространённой жирной кислоты — стеариновой, то при полном его окислении выделится 133 кг воды: 2С57Н110О6+163О2=114СО2+110Н2О! При этом верблюды получают много энергии, вот почему они очень выносливы. Кстати, и для человека ограничение в питье (конечно, в разумных пределах) — один из эффективных способов избавиться от излишнего жира, который будет окисляться, стремясь восполнить недостаток воды в организме.
Учёные долго не могли понять, как же усваиваются организмом жиры. В 60-х гг. XX в. сотрудники американской фирмы Procter & Gamble Фред Матсон и Роберт Волпенхейм установили, что жиры в пищеварительном тракте гидролизуются, но не до конца. Две крайние эфирные связи в молекуле триглицерида расщепляются под действием воды, а центральная остаётся неизменной. Гидролиз начинается уже в желудке под влиянием содержащегося в слюне фермента липазы (от греч. «липос» — «жир»), которого особенно много у маленьких детей. Затем в дело вступает липаза, вырабатываемая поджелудочной железой. Из желудка жир периодически выбрасывается в тонкий кишечник. Этот процесс регулируется продуктами гидролиза — моноглицеридами и жирными кислотами, которые из кишечника «сигнализируют» желудку, что пора пропустить очередную порцию жира или же, наоборот, задержать её в желудке, чтобы облегчить переваривание в кишечнике. Как подаются эти сигналы, пока неясно. Длительное чувство сытости («полного желудка») после жирной пищи как раз и связано с замедленным переходом жиров из желудка в кишечник.
Жиры наряду с белками и углеводами составляют основу питания человека. Они — самый эффективный источник энергии: 1 г жиров при полном окислении в клетках организма даёт 9,5 ккал (40 кДж) энергии. Это вдвое больше, чем можно получить из белков или углеводов. Для сравнения: сгорание 1 г бензина даёт 42 кДж, 1 г каменного угля — 31 кДж, 1 г сухой древесины — 15 кДж. Так что жир по праву следует считать высококалорийным «топливом». Оно расходуется преимущественно для поддержания нормальной температуры нашего тела, а также на работу различных мышц. Даже когда человек спит, ему на покрытие энергетических расходов (так называемый основной обмен) каждый час требуется около
350 кДж энергии; примерно такова же мощность электрической 100-ваттной лампочки.
Жирная пища с незапамятных времён ассоциировалась с богатством и благополучием. В Библии она упоминается под названием «тук», причём нередко в иносказательном смысле — для обозначения отборных продуктов. «...Я дам вам лучшее в земле Египетской, — говорит фараон Иосифу, — и вы будете есть тук земли» (Быт. 45.18). На средневековых пирах основным блюдом было жирное мясо. Согласно словарю В. И. Даля, на Руси тучными называли упитанных, здоровых людей, а также обильные, плодоносные поля и луга. На картинах Рубенса можно видеть множество тучных фигур, в XVII в. олицетворявших красоту, богатство и благополучие. Прошло время, и вкусы изменились: на пороге XXI столетия эталоном красоты и здоровья служат не тучные, как сотни лет назад, а стройные спортивные фигуры.
Знакомый каждому из нас маргарин получил своё название от греческого слова «маргарон» — жемчуг. Придумал его химик Мишель Эжен Шеврёль, а произошло это более чем за 50 лет до получения маргарина. Работая с самыми разнообразными жирами — от козьего сала до тюленьего жира, учёный смог выделить новые химические соединения — монокарбоновые (жирные) кислоты, которым сразу же давал названия. Иные из них не прижились, но некоторые — например, олеиновая, стеариновая — стали общепризнанными.
В самом начале работы над жирами Шеврёль выделил из свиного сала кислоту, которую назвал маргариновой (вероятно, вещество в виде шариков напомнило ему о жемчуге). Авторитет учёного был настолько велик, что почти полвека никто не ставил под сомнение результаты его исследований. Маргариновую кислоту рассматривали как одну из самых распространённых в природе жирных кислот. При этом считалось, что её формула С16Н33СООН. Но когда в 1857 г. кислоту с таким составом синтезировали в лаборатории, то обнаружилось, что она отличается от «маргариновой кислоты» Шеврёля. К ней на десятки лет потеряли интерес: кому нужна искусственно полученная в малых количествах кислота, когда подобные ей можно извлекать тысячами тонн из природных жиров.
В 1811 г. французский химик Луи Никола Воклен принёс в лабораторию образец прогорклого жира и предложил своему ученику Мишелю Эжену Шеврёлю (1786—1889) сделать его анализ. Шеврёль занялся исследованием этой новой, в сущности, темы, серьёзно увлёкся и... стал основоположником химии жиров.
Он первым выяснил строение жиров и изучил процесс их омыления, а также получил в индивидуальном виде многие жирные кислоты.
Ко времени начала его исследований о жирах было известно немного. В XVII в. немецкий учёный, один из первых химиков-аналитиков, Отто Тахений (1652—1699) выступил с гипотезой о том, что жиры содержат «скрытую кислоту». В середине следующего столетия французский химик Клод Жозеф Жоффруа (1685—1752) обнаружил, что при разложении мыла (его готовили тогда варкой жира со щёлочью) кислотой образуется жирная масса. А в 1779 г. знаменитый шведский химик Карл Вильгельм Шееле, нагрев оливковое масло с влажным глётом РbО, получил новое жидкое вещество сладковатого вкуса. Повторив опыты со свиным салом, сливочным маслом и другими жирами, учёный убедился в том, что обнаруженное им вещество входит в состав и растительных, и животных жиров, и назвал его «сладким началом масел». Кроме того, Шееле выявил в продуктах гидролиза жиров неизвестные ранее химические соединения — монокарбоновые (жирные) кислоты.
Последовательность аминокислот в белках кодируется генами, которые хранятся и передаются по наследству с помощью молекул ДНК (см. статьи «Хранитель наследственной информации. ДНК» и «Экспрессия генов»). Пространственную структуру белка задаёт именно порядок расположения аминокислот. Получается, что не только первичная, но и вторичная, третичная и четвертичная структуры белков составляют содержание наследственной информации. Следовательно, и выполняемые белками функции запрограммированы генетически. Громадный перечень этих функций позволяет белкам по праву называться главными молекулами жизни. Поэтому сведения о белках и есть то бесценное сокровище, которое передаётся в природе от поколения к поколению.
Интерес человека к этим органическим соединениям с каждым годом только увеличивается. Сегодня учёные уже расшифровали структуру многих белковых молекул. Они выясняют функции самых разных белков, пытаются определить взаимосвязь функций со структурой. Установление сходства и различий у белков, выполняющих аналогичные функции у разных живых организмов, позволяет глубже проникать в тайны эволюции.
Конская грива содержит белок кератин.
...Служат питательными веществами. В семенах многих растений (пшеницы, кукурузы, риса и др.) содержатся пищевые белки. К ним относятся также альбумин — основной компонент яичного белка и казеин — главный белок молока. При переваривании в организме человека белковой пищи происходит гидролиз пептидных связей. Белки «разбираются» на отдельные аминокислоты, из которых организм в дальнейшем «строит» новые пептиды или использует для получения энергии. Отсюда и название: греческое слово «пептос» означает «переваренный». Интересно, что гидролизом пептидной связи управляют тоже белки — ферменты.
Полный набор аминокислот живой организм получает с пищей, содержащей белки и свободные аминокислоты.
Чтобы «зарядиться» энергией, этому обитателю океана требуется много кислорода — не менее 50 л в час. Поступающий из морской воды кислород разносится по телу кальмара с помощью особого белка, содержащего медь, — гемоцианина (от греч. «гема» — «кровь» и «кианос» — «лазурный», «голубой»).