В 1811 г. французский химик Луи Никола Воклен принёс в лабораторию образец прогорклого жира и предложил своему ученику Мишелю Эжену Шеврёлю (1786—1889) сделать его анализ. Шеврёль занялся исследованием этой новой, в сущности, темы, серьёзно увлёкся и... стал основоположником химии жиров.
Он первым выяснил строение жиров и изучил процесс их омыления, а также получил в индивидуальном виде многие жирные кислоты.
Ко времени начала его исследований о жирах было известно немного. В XVII в. немецкий учёный, один из первых химиков-аналитиков, Отто Тахений (1652—1699) выступил с гипотезой о том, что жиры содержат «скрытую кислоту». В середине следующего столетия французский химик Клод Жозеф Жоффруа (1685—1752) обнаружил, что при разложении мыла (его готовили тогда варкой жира со щёлочью) кислотой образуется жирная масса. А в 1779 г. знаменитый шведский химик Карл Вильгельм Шееле, нагрев оливковое масло с влажным глётом РbО, получил новое жидкое вещество сладковатого вкуса. Повторив опыты со свиным салом, сливочным маслом и другими жирами, учёный убедился в том, что обнаруженное им вещество входит в состав и растительных, и животных жиров, и назвал его «сладким началом масел». Кроме того, Шееле выявил в продуктах гидролиза жиров неизвестные ранее химические соединения — монокарбоновые (жирные) кислоты.
Последовательность аминокислот в белках кодируется генами, которые хранятся и передаются по наследству с помощью молекул ДНК (см. статьи «Хранитель наследственной информации. ДНК» и «Экспрессия генов»). Пространственную структуру белка задаёт именно порядок расположения аминокислот. Получается, что не только первичная, но и вторичная, третичная и четвертичная структуры белков составляют содержание наследственной информации. Следовательно, и выполняемые белками функции запрограммированы генетически. Громадный перечень этих функций позволяет белкам по праву называться главными молекулами жизни. Поэтому сведения о белках и есть то бесценное сокровище, которое передаётся в природе от поколения к поколению.
Интерес человека к этим органическим соединениям с каждым годом только увеличивается. Сегодня учёные уже расшифровали структуру многих белковых молекул. Они выясняют функции самых разных белков, пытаются определить взаимосвязь функций со структурой. Установление сходства и различий у белков, выполняющих аналогичные функции у разных живых организмов, позволяет глубже проникать в тайны эволюции.
Конская грива содержит белок кератин.
...Служат питательными веществами. В семенах многих растений (пшеницы, кукурузы, риса и др.) содержатся пищевые белки. К ним относятся также альбумин — основной компонент яичного белка и казеин — главный белок молока. При переваривании в организме человека белковой пищи происходит гидролиз пептидных связей. Белки «разбираются» на отдельные аминокислоты, из которых организм в дальнейшем «строит» новые пептиды или использует для получения энергии. Отсюда и название: греческое слово «пептос» означает «переваренный». Интересно, что гидролизом пептидной связи управляют тоже белки — ферменты.
Полный набор аминокислот живой организм получает с пищей, содержащей белки и свободные аминокислоты.
Чтобы «зарядиться» энергией, этому обитателю океана требуется много кислорода — не менее 50 л в час. Поступающий из морской воды кислород разносится по телу кальмара с помощью особого белка, содержащего медь, — гемоцианина (от греч. «гема» — «кровь» и «кианос» — «лазурный», «голубой»).
Белки выполняют в организме множество функций; они, например, защищают клетки от нежелательных вторжений, предохраняют их от повреждений. Специальные белки — антитела обладают способностью распознавать проникшие в клетки бактерии, вирусы, чужеродные полимерные молекулы и нейтрализовывать их.
У высших позвоночных от чужеродных частиц организм защищает иммунная система. Она устроена так, что организм, в который вторглись такие «агрессоры» — антигены, начинает вырабатывать антитела. Молекула антитела прочно связывается с антигеном: у антител, как и у ферментов, тоже есть центры связывания. Боковые цепи аминокислот расположены в центрах таким образом, что антиген, попавший в эту ловушку, уже не сможет вырваться из «железных лап» антитела. После связывания с антителом враг выдворяется за пределы организма.
Можно ввести в организм небольшое количество некоторых полимерных молекул, входящих в состав бактерий или вирусов-возбудителей какой-либо инфекционной болезни.
В организме немедленно появятся соответствующие антитела. Теперь попавший в кровь или лимфу «настоящий» болезнетворный микроб тотчас же подвергнется атаке этих антител, и болезнь будет побеждена. Такой способ борьбы с инфекцией есть не что иное, как нелюбимая многими прививка. Благодаря ей организм приобретает иммунитет к инфекционным болезням.
Все химические реакции, протекающие в клетке, происходят благодаря особому классу белков — ферментам. Это белки-катализаторы. У них есть свой секрет, который позволяет им работать гораздо эффективнее других катализаторов, ускоряя реакции в миллиарды раз.
Предположим, что несколько приятелей никак не могут встретиться. Но стоило одному из них пригласить друзей на день рождения, как результат не заставил себя ждать: все оказались в одном месте в назначенное время.
Чтобы встреча состоялась, понадобилось подтолкнуть друзей к контакту. То же самое делает и фермент. В его молекуле есть так называемые центры связывания. В них расположены привлекательные для определённого типа химических соединений (и только для них!) «уютные кресла» — R-группы, связывающие какие-то участки молекул реагирующих веществ. Например, если одна из молекул имеет неполярную группу, в центре связывания находятся гидрофобные боковые цепи. Если же в молекуле есть отрицательный заряд, его будет поджидать в молекуле фермента R-группа с положительным зарядом.
В результате обе молекулы реагентов связываются с ферментом и оказываются в непосредственной близости друг от друга. Мало того, те их группы, которые должны вступить в химическую реакцию, сориентированы в пространстве нужным для реакции образом. Теперь за дело принимаются боковые цепи фермента, играющие роль катализаторов. В ферменте всё «продумано» таким образом, что R-группы-катализаторы тоже расположены вблизи от места событий, которое называют активным центром. А после завершения реакции фермент «отпускает на волю» молекулы-продукты (см. статью «Ферменты — на все руки мастера»).
В природе почти ничего не происходит случайно. Если белок принял определённую форму в пространстве, это должно служить достижению какой-то цели. Действительно, только белок с «правильной» пространственной структурой может обладать определёнными свойствами, т. е. выполнять те функции в организме, которые ему предписаны. А делает он это с помощью всё тех же R-групп аминокислот. Оказывается, боковые цепи не только поддерживают «правильную» форму молекулы белка в пространстве. R-группы могут связывать другие органические и неорганические молекулы, принимать участие в химических реакциях, выступая, например, в роли катализатора.
Часто сама пространственная организация полипептидной цепи как раз и нужна для того, чтобы сосредоточить в определённых точках пространства необходимый для выполнения той или иной функции набор боковых цепей. Пожалуй, ни один процесс в живом организме не проходит без участия белков.
Молоко представляет собой коллоидный раствор жира в воде. Под микроскопом хорошо видно, что оно неоднородно: в бесцветном растворе (сыворотке) плавают жировые шарики.
В коровьем молоке обычно содержится от 3 до 6 % жиров (в основном это сложные эфиры глицерина и насыщенных карбоновых кислот — пальмитиновой, стеариновой), около 3 % белков, а ещё углеводы, органические кислоты, витамины и минеральные вещества.
Белок казеин в молоке присутствует в связанном виде — ковалентно присоединённые к аминокислоте серину фосфатные группы образуют соли с ионами кальция. При подкислении молока эти соли разрушаются, и казеин выделяется в виде белой творожистой массы. В желудке человека под действием особых ферментов происходит процесс, называемый «створаживанием казеина». Створоженный казеин выпадает в осадок и медленнее выводится из организма, а потому полнее усваивается. Казеин высоко питателен: в нём есть почти все аминокислоты, необходимые человеку для построения собственных белков. В чистом виде он представляет собой безвкусный белый порошок, не растворимый в воде. Помимо него в молоке содержатся и другие белки, например лактальбумин. При кипячении этот белок превращается в нерастворимую форму, образуя на поверхности кипячёного молока характерную белую плёнку — пенку.
Связи, поддерживающие пространственную структуру белка, довольно легко разрушаются. Мы с детства знаем, что при варке яиц прозрачный яичный белок превращается в упругую белую массу, а молоко при скисании загустевает. Происходит это из-за разрушения пространственной структуры белков альбумина в яичном белке и казеина (от лат. caseus — «сыр») в молоке. Такой процесс называется денатурацией. В первом случае её вызывает нагревание, а во втором — значительное увеличение кислотности (в результате жизнедеятельности обитающих в молоке бактерий). При денатурации белок теряет способность выполнять присущие ему в организме функции (отсюда и название процесса: от лат. denaturare — «лишать природных свойств»). Денатурированные белки легче усваиваются организмом, поэтому одной из целей термической обработки пищевых продуктов является денатурация белков.
Во многих белках полипептидные цепи свёрнуты в пространстве в компактные структуры, напоминающие сферы. Такие белки называют глобулярными, а саму молекулу белка — глобулой (от лат. globus — «шар»). Молекулы-глобулы имеют, например, все ферменты и антитела. Другие белки представляют собой длинные волокна, поэтому они получили название фибриллярных (от лат. fibra — «волокно») белков. Белки с вытянутыми молекулами, такие, как коллаген и кератин, входят в состав соединительных тканей организмов. В отличие от белков-шариков белки-нити нерастворимы в воде.
Молекула белка может состоять не из одной, а из нескольких полипептидных цепей. Каждая такая цепь представляет собой самостоятельную пространственную структуру — субъединицу. Например, белок гемоглобин состоит из четырёх субъединиц, которые образуют единую молекулу, располагаясь в вершинах почти правильного тетраэдра. Субъединицы «прилипают» друг к другу благодаря тем же самым силам, что стабилизируют третичную структуру. Это гидрофобные взаимодействия, солевые мостики и водородные связи.
Если белок состоит из нескольких субъединиц, говорят, что он обладает четвертичной структурой. Такая структура представляет собой высший уровень организации белковой молекулы. В отличие от первых трёх уровней четвертичная структура есть далеко не у всех белков. Приблизительно половина из известных на сегодняшний день белков её не имеют.
Ответ на этот вопрос даёт математический расчёт. Пептид, состоящий из двух разных аминокислот А и В, в зависимости от порядка их расположения может иметь только 2 изомерные формы — АВ и ВА. У пептида из трёх аминокислот А, В и С уже до 6 изомерных форм (ABC, ACB, ВАС, ВСА, CAB, CBA), а у пептида из четырёх различных аминокислот — 24 изомера. Если же в составе пептида 20 разных аминокислот, число возможных изомеров составит примерно 2•1018!