Наука » Медицина » Гистология
Кора мозга – пласт серого вещества на поверхности больших полушарий, толщиной 2-5 мм, образующий многочисленные борозды, извилины значительно увеличивающие ее площадь. Кора образована телами нейронов и глиальных клеток, расположенных послойно («экранный» тип организации). Под ней лежит белое вещество, представленное нервными волокнами.
Кора представляет собой наиболее молодой филогенетически и наиболее сложный по морфофункциональной организации отдел мозга. Это место высшего анализа и синтеза всей информации поступающей в мозг. Здесь происходит интеграция всех сложных форм поведения. Кора мозга отвечает за сознание, мышление, память, «эвристическую деятельность» (способность к обобщениям, открытиям). В коре содержится более 10 млрд. нейронов и 100 млрд. глиальных клеток.
Нейроны коры по количеству отростков только мультиполярные, а по их месту в рефлекторных дугах и выполняемым функциям все они вставочные, ассоциативные. По функции и строению в коре выделяют более 60 типов нейронов. По форме различают две их основных группы: пирамидные и непирамидные. Пирамидные нейроны являются основным типом нейронов коры. Размеры их перикарионов от 10 до 140 мкм, на срезе они имеют пирамидную форму. От их верхнего угла вверх отходит длинный (апикальный) дендрит, который Т-образно делится в молекулярном слое.
Кора представляет собой наиболее молодой филогенетически и наиболее сложный по морфофункциональной организации отдел мозга. Это место высшего анализа и синтеза всей информации поступающей в мозг. Здесь происходит интеграция всех сложных форм поведения. Кора мозга отвечает за сознание, мышление, память, «эвристическую деятельность» (способность к обобщениям, открытиям). В коре содержится более 10 млрд. нейронов и 100 млрд. глиальных клеток.
Нейроны коры по количеству отростков только мультиполярные, а по их месту в рефлекторных дугах и выполняемым функциям все они вставочные, ассоциативные. По функции и строению в коре выделяют более 60 типов нейронов. По форме различают две их основных группы: пирамидные и непирамидные. Пирамидные нейроны являются основным типом нейронов коры. Размеры их перикарионов от 10 до 140 мкм, на срезе они имеют пирамидную форму. От их верхнего угла вверх отходит длинный (апикальный) дендрит, который Т-образно делится в молекулярном слое.
Наука » Медицина » Гистология
Функции. Нервная система обеспечивает восприятие, хранение и переработку информации, поступающей из внешней и внутренней среды, регуляцию и интеграцию всех органов и систем организма и его взаимодействие с окружающей средой.
Общий план строения. Анатомически, нервную систему условно делят на центральную и периферическую. К центральной нервной системе (ЦНС) относят головной и спинной мозг, к периферической – периферические нервные узлы (нервные ганглии), нервы, нервные сплетения и нервные окончания.
Нервная система подразделяется также на вегетативную, иннервирующую внутренние органы, сосуды и железы, и соматическую, иннервирующую все остальные части тела («сому»), основной частью которой является поперечнополосатая, скелетная мускулатура.
Все органы нервной системы – паренхиматозные. Они состоят из стромы и паренхимы. Строма выполняет вспомогательные функции (опорную, трофическую, защитную) и образована соединительнотканной оболочкой, окружающей органы, а также прослойками рыхлой соединительной ткани с кровеносными сосудами, идущими вглубь паренхимы. Паренхима выполняет главные, специфические функции (воспринимает раздражения, генерирует нервные импульсы, вызывает ответные реакции) и образована нервной тканью.
Общий план строения. Анатомически, нервную систему условно делят на центральную и периферическую. К центральной нервной системе (ЦНС) относят головной и спинной мозг, к периферической – периферические нервные узлы (нервные ганглии), нервы, нервные сплетения и нервные окончания.
Нервная система подразделяется также на вегетативную, иннервирующую внутренние органы, сосуды и железы, и соматическую, иннервирующую все остальные части тела («сому»), основной частью которой является поперечнополосатая, скелетная мускулатура.
Все органы нервной системы – паренхиматозные. Они состоят из стромы и паренхимы. Строма выполняет вспомогательные функции (опорную, трофическую, защитную) и образована соединительнотканной оболочкой, окружающей органы, а также прослойками рыхлой соединительной ткани с кровеносными сосудами, идущими вглубь паренхимы. Паренхима выполняет главные, специфические функции (воспринимает раздражения, генерирует нервные импульсы, вызывает ответные реакции) и образована нервной тканью.
Наука » Медицина » Гистология
Нервная система функционирует по рефлекторному принципу. Морфологическим субстратом её работы являются рефлекторные дуги.
Рефлекторная дуга представляет собой цепь нейронов, связанных между собой синапсами и обеспечивающую проведение нервного импульса от рецептора чувствительного нейрона до эффектора в рабочем органе.
Различают простые и сложные рефлекторные дуги. Простая рефлекторная дуга состоит из двух нейронов - чувствительного и двигательного. Сложная рефлекторная дуга включает ещё и вставочные нейроны. Рефлекторные дуги в ЦНС обычно содержат несколько вставочных нейронов.
В рефлекторной дуге возбуждение передается только в одном направлении: от рецептора по дендриту чувствительного нейрона к его перекариону, затем по его аксону через межнейрональный синапс к дендриту и телу вставочного нейрона, оттуда по аксону вставочного нейрона через синапс к дендриту эффекторного (двигательного или секреторного) нейрона, через его перикарион и аксон к эффектору в рабочем органе (мышца или железа).
Рефлекторная дуга представляет собой цепь нейронов, связанных между собой синапсами и обеспечивающую проведение нервного импульса от рецептора чувствительного нейрона до эффектора в рабочем органе.
Различают простые и сложные рефлекторные дуги. Простая рефлекторная дуга состоит из двух нейронов - чувствительного и двигательного. Сложная рефлекторная дуга включает ещё и вставочные нейроны. Рефлекторные дуги в ЦНС обычно содержат несколько вставочных нейронов.
В рефлекторной дуге возбуждение передается только в одном направлении: от рецептора по дендриту чувствительного нейрона к его перекариону, затем по его аксону через межнейрональный синапс к дендриту и телу вставочного нейрона, оттуда по аксону вставочного нейрона через синапс к дендриту эффекторного (двигательного или секреторного) нейрона, через его перикарион и аксон к эффектору в рабочем органе (мышца или железа).
Наука » Медицина » Гистология
Это окончания дендритов рецепторных (чувствительных) нейронов, расположенных только в спинномозговых ганглиях или чувствительных ядрах черепно-мозговых нервов. Рецепторы рассеяны по всему организму и воспринимают раздражения как из внешней среды (экстерорецепторы), так и внутренней среды (интерорецепторы). По виду воспринимаемого раздражения рецепторы делят на барорецепторы (воспринимают давление), хеморецепторы (химические вещества), терморецепторы (температуру) и др.
По строению рецепторы делят на свободные (состоят только из конечных ветвлений осевого цилиндра) и несвободные (окружены клетками нейроглии и соединительной ткани). Если несвободные рецепторы окружены соединительнотканной капсулой, то их называют инкапсулированные, а не имеющие такой капсулы – неинкапсулированные рецепторы.
Свободные нервные окончания характерны для эпителия. Нервное волокно, подходя к эпителиальному пласту, теряет миелиновую оболочку, а осевой цилиндр распадается на мельчайшие веточки, которые проходят между эпителиальными клетками.
По строению рецепторы делят на свободные (состоят только из конечных ветвлений осевого цилиндра) и несвободные (окружены клетками нейроглии и соединительной ткани). Если несвободные рецепторы окружены соединительнотканной капсулой, то их называют инкапсулированные, а не имеющие такой капсулы – неинкапсулированные рецепторы.
Свободные нервные окончания характерны для эпителия. Нервное волокно, подходя к эпителиальному пласту, теряет миелиновую оболочку, а осевой цилиндр распадается на мельчайшие веточки, которые проходят между эпителиальными клетками.
Наука » Медицина » Гистология
Эффекторные нервные окончания передают нервные импульсы от эффекторных нейронов рабочим органам (мышцы, железы). Соответственно, они бывают двух типов – двигательные и секреторные. Двигательные нервные окончания – концевые аппараты двигательных нейронов (мотонейронов), которые оканчиваются на мышце. Двигательные окончания в поперечно-полосатых мышцах называются нервно-мышечными окончаниями. Они состоят из концевого ветвления осевого цилиндра нервного волокна (пресинаптическая часть) и специализированного участка мышечного волокна (постсинаптическая часть). Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновую оболочку и погружается в мышечное волокно, вдавливая его сарколемму. Плазмолемма покрывающая ветвления аксона является пресинаптической мембраной, а сарколемма, покрывающая в этом участке мышечное волокно, становится постсинаптической мембраной. Между ними расположена синаптическая щель шириной около 50 нм. В терминальных ветвлениях аксона расположены многочисленные пресинаптические пузырьки, содержащие медиатор ацетилхолин. При прохождении по аксону нервного импульса ацетилхолин выделяется в синаптическую щель и действует на холинорецепторы постсинаптической мембраны. Это вызывает деполяризацию постсинаптической мембраны, которая передаётся по Т-трубочкам на всю толщину мышечного волокна и достигает цистерн саркоплазматической сети. Из них выделяются ионы кальция, под действием которых происходит взаимодействие между актиновыми и миозиновыми нитями и сокращение мышечного волокна. После этого ацетилхолин быстро разрушается ферментом ацетилхолинэстеразой, расположенной в постсинаптической мембране.
Наука » Медицина » Гистология
Это сложный каскад событий, включающий в себя следующие этапы: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора в синаптическую щель, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или обратный захват его пресинаптической мембраной.
Многие наркотики (кокаин, амфетамин) и психотропные лекарственные препараты действуют через системы захвата нейромедиаторов. При некоторых нервно-психических заболеваниях нарушается синтез белков-транспортёров.
Рецепторы к нейромедиаторам – это специальные белки расположенные в постсинатической мембране. Они бывают двух типов: связанные с ионными каналами и не связанные с ними.
Рецепторы, связанные с ионными каналами опосредуют быстрые постсинаптические эффекты, проявляющиеся в течение нескольких милисекунд. Ацетилхолин, аспартат, АТФ и глутамат открывают катионные каналы, что ведет к возникновению быстрых возбудительных постсинаптических потенциалов. ГАМК и глицин открывают каналы для ионов CI и в результате возникают быстрые тормозные постсинаптические потенциалы.
Рецепторы, не связанные с ионными каналами, опосредуют медленные, но продолжительные эффекты нейромедиаторов (лежат в основе научения и памяти). Они сопряжены с ферментами, которые в присутствии нейромедиатора катализируют образование внутриклеточного посредника (вторичного медиатора), например цАМФ (циклического аденозинмонофосфата). В свою очередь, этот посредник вызывает целый каскад молекулярных сдвигов, вызывающих изменения в постсинаптической клетке, в том числе модификацию ионных каналов в клеточной мембране.
Многие наркотики (кокаин, амфетамин) и психотропные лекарственные препараты действуют через системы захвата нейромедиаторов. При некоторых нервно-психических заболеваниях нарушается синтез белков-транспортёров.
Рецепторы к нейромедиаторам – это специальные белки расположенные в постсинатической мембране. Они бывают двух типов: связанные с ионными каналами и не связанные с ними.
Рецепторы, связанные с ионными каналами опосредуют быстрые постсинаптические эффекты, проявляющиеся в течение нескольких милисекунд. Ацетилхолин, аспартат, АТФ и глутамат открывают катионные каналы, что ведет к возникновению быстрых возбудительных постсинаптических потенциалов. ГАМК и глицин открывают каналы для ионов CI и в результате возникают быстрые тормозные постсинаптические потенциалы.
Рецепторы, не связанные с ионными каналами, опосредуют медленные, но продолжительные эффекты нейромедиаторов (лежат в основе научения и памяти). Они сопряжены с ферментами, которые в присутствии нейромедиатора катализируют образование внутриклеточного посредника (вторичного медиатора), например цАМФ (циклического аденозинмонофосфата). В свою очередь, этот посредник вызывает целый каскад молекулярных сдвигов, вызывающих изменения в постсинаптической клетке, в том числе модификацию ионных каналов в клеточной мембране.
Наука » Медицина » Гистология
Это коммуникационные соединения между нейронами. По их расположению различают аксосоматические синапсы (когда аксоны одного нейрона оканчиваются на теле другого нейрона), аксодендритические (аксоны одного нейрона оканчиваются на дендритах другого нейрона) и аксоаксональные (аксоны одного нейрона заканчиваются на аксонах другого нейрона, обычно тормозя функцию последнего).
Синапсы состоят из двух частей: пресинаптической и постсинаптической. Пресинаптическая часть синапса образована колбовидным расширением аксона с пресинаптической мембраной и содержит синаптические пузырьки со специальными биологически активными химическими веществами, медиаторами (посредниками). Постсинаптическая часть синапса включает в себя участок постсинаптической мембраны воспринимающего нейрона, в которой находятся специфические рецепторы, с которыми взаимодействуют медиаторы. Между пре- и постсинаптическими мембранами находится синаптическая щель шириной 20-30 нм.
По химической природе используемого медиатора различают синапсы:
1. Холинергические (медиатор - ацетилхолин).
2. Аминергические (медиаторы – биогенные амины: адреналин, норадреналин, дофамин, серотонин, гистамин и др.).
3. ГАМКергические (медиатор - гаммааминомасляная кислота).
Синапсы состоят из двух частей: пресинаптической и постсинаптической. Пресинаптическая часть синапса образована колбовидным расширением аксона с пресинаптической мембраной и содержит синаптические пузырьки со специальными биологически активными химическими веществами, медиаторами (посредниками). Постсинаптическая часть синапса включает в себя участок постсинаптической мембраны воспринимающего нейрона, в которой находятся специфические рецепторы, с которыми взаимодействуют медиаторы. Между пре- и постсинаптическими мембранами находится синаптическая щель шириной 20-30 нм.
По химической природе используемого медиатора различают синапсы:
1. Холинергические (медиатор - ацетилхолин).
2. Аминергические (медиаторы – биогенные амины: адреналин, норадреналин, дофамин, серотонин, гистамин и др.).
3. ГАМКергические (медиатор - гаммааминомасляная кислота).
Наука » Медицина » Гистология
Нейроны взрослых человека и животных не способны к делению, клеточной регенерации. Однако у них хорошо развита внутриклеточная регенерация: обновление макромолекул и органелл. При гибели одних нейронов, сохранившиеся нейроны гипертрофируются и берут на себя функции погибших. Возможно также восстановление повреждённых отростков нейронов и, соответственно, регенерация периферических нервов.
После перерезки нервного волокна, наступает дегенерация осевого цилиндра дистальней места повреждения. Леммоциты и макрофаги фагоцитируют продукты распада, очищают место провреждения, а затем размножаются и образуют тяжи – ленты Бюнгера. На проксимальном отрезке осевого цилиндра образуется наплыв аксоплазмы - формируется колба роста (как в эмбриогенезе). Осевой цилиндр растёт по дорожке из леммоцитов со скоростью 2-4 мм в сутки до тех пор, пока не достигает иннервируемого органа. После этого вокруг новообразованного осевого цилиндра леммоциты образуют миелиновую оболочку, а в рабочем органе вновь формируется (восстанавливается) нервное окончание.
После перерезки нервного волокна, наступает дегенерация осевого цилиндра дистальней места повреждения. Леммоциты и макрофаги фагоцитируют продукты распада, очищают место провреждения, а затем размножаются и образуют тяжи – ленты Бюнгера. На проксимальном отрезке осевого цилиндра образуется наплыв аксоплазмы - формируется колба роста (как в эмбриогенезе). Осевой цилиндр растёт по дорожке из леммоцитов со скоростью 2-4 мм в сутки до тех пор, пока не достигает иннервируемого органа. После этого вокруг новообразованного осевого цилиндра леммоциты образуют миелиновую оболочку, а в рабочем органе вновь формируется (восстанавливается) нервное окончание.
Наука » Медицина » Гистология
Иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой – симпатическими и парасимпатическими нервными волокнами, терминали которых формируют варикозные расширения на гладкомышечных клетках. Гладкие миоциты функционируют не изолированно, а клеточными комплексами. Клетки контактируют друг с другом при помощи нексусов. Последние способствуют проведению возбуждения от клетки к клетке, охватывая сразу группу миоцитов. В составе комплексов есть также миоциты-пейсмекеры, которые сами генерируют потенциал действия и передают его соседним клеткам.
Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эндомизий. Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием. В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпимизием.
Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эндомизий. Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием. В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпимизием.
Наука » Медицина » Гистология
Гладкая мышечная ткань мезенхимного происхождения располагается в стенке внутренних органов и сосудов. Структурной единицей ее является гладкий миоцит. Это клетка веретеновидной, иногда отростчатой формы (матка, эндокард, аорта), длиной 20-500 мкм, с центрально расположенным ядром. Цитолемма гладкого миоцита образует многочисленные впячивания – кавеолы (мелкие пузырьки). Снаружи цитолемму покрывает тонкая базальная мембрана. В базальной мембране каждого миоцита есть отверстия, где клетки контактируют друг с другом при помощи нексусов, осуществляющих метаболические связи.
Органеллы общего значения – комплекс Гольджи, митохондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохондрии. Саркоплазматическая сеть участвует в синтезе гликозаминогликанов и белковых молекул, из которых осуществляется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примыкают к кавеолам и вместе с ними служат для депонирования ионов кальция.
Органеллы общего значения – комплекс Гольджи, митохондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохондрии. Саркоплазматическая сеть участвует в синтезе гликозаминогликанов и белковых молекул, из которых осуществляется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примыкают к кавеолам и вместе с ними служат для депонирования ионов кальция.
Наука » Медицина » Гистология
Мышечные ткани – это специализированные ткани, основной функцией которых является сокращение. Благодаря им обеспечиваются все двигательные процессы в организме (гемоциркуляция в сосудах, ритмическая деятельность миокарда, перистальтика пищеварительного тракта и другие, а также перемещение организма в пространстве). Сокращение структурных элементов мышечных тканей осуществляется с помощью специальных органелл – миофибрилл – и является результатом взаимодействия молекул сократительных белков.
Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характеризуется тем, что содержит миофибриллы, не имеющие поперечной исчерченности; 2) поперечнополосатая (исчерченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделяется на скелетную и сердечную. Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, находятся во внутренних органах и сосудах); 2) эпидермальные (развиваются из кожной эктодермы, включают немышечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейральные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) соматические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань);
Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характеризуется тем, что содержит миофибриллы, не имеющие поперечной исчерченности; 2) поперечнополосатая (исчерченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделяется на скелетную и сердечную. Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, находятся во внутренних органах и сосудах); 2) эпидермальные (развиваются из кожной эктодермы, включают немышечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейральные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) соматические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань);
Наука » Медицина » Гистология
Она состоит из эпифизов и диафиза. С наружи диафиз покрыт надкостницей, или периостом (рис. 6-3). В надкостнице различают два слоя: наружный (волокнистый) – образован в основном волокнистой соединительной тканью и внутренний (клеточный) – содержит клетки остеобласты. Через надкостницу проходят питающие кость сосуды и нервы, а также под разными углами проникают коллагеновые волокна, которые получили название прободающих волокон. Чаще всего эти волокна разветвляются только в наружном слое общих пластинок. Надкостница связывает кость с окружающими тканями и принимает участие в ее трофике, развитии, росте и регенерации.
Компактное вещество, образующее диафиз кости, состоит из костных пластинок, располагающихся в определенном порядке, образуя три слоя:
- наружный слой общих пластинок. В нем пластинки не образуют полных колец вокруг диафиза кости. В этом слое залегают прободающие каналы, по которым из надкостницы внутрь кости входят сосуды.
-средний, остеонный слой - образован концентрически наслоенными вокруг сосудов костными пластинками. Такие структуры называются остеонами, а пластинки, их образующие - остеонные пластинки. Остеоны являются структурной единицей компактного вещества трубчатой кости. Каждый остеон отграничен от соседних остеонов так называемой спайной линией. В центральном канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью. Все остеоны в основном расположены параллельно длинной оси кости. Каналы остеонов анастомозируют друг с другом. Сосуды, расположенные в каналах остеонов, сообщаются друг с другом, с сосудами костного мозга и надкостницы. Кроме пластинок остеонов в этом слое располагаются также вставочные пластинки (остатки старых разрушенных остеонов), которые лежат между остеонами.
Компактное вещество, образующее диафиз кости, состоит из костных пластинок, располагающихся в определенном порядке, образуя три слоя:
- наружный слой общих пластинок. В нем пластинки не образуют полных колец вокруг диафиза кости. В этом слое залегают прободающие каналы, по которым из надкостницы внутрь кости входят сосуды.
-средний, остеонный слой - образован концентрически наслоенными вокруг сосудов костными пластинками. Такие структуры называются остеонами, а пластинки, их образующие - остеонные пластинки. Остеоны являются структурной единицей компактного вещества трубчатой кости. Каждый остеон отграничен от соседних остеонов так называемой спайной линией. В центральном канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью. Все остеоны в основном расположены параллельно длинной оси кости. Каналы остеонов анастомозируют друг с другом. Сосуды, расположенные в каналах остеонов, сообщаются друг с другом, с сосудами костного мозга и надкостницы. Кроме пластинок остеонов в этом слое располагаются также вставочные пластинки (остатки старых разрушенных остеонов), которые лежат между остеонами.