Сталактиты возникают в пещерах. Чтобы узнать, как они образуются, давайте исследуем одну из таких пещер — пещеру Карлсбад в штате Нью-Мексико. Горной породой в Карлсбаде является известняк. Известняк — довольно мягкая порода, которая может быть растворена слабой кислотой. Кислота, которая растворяет известняк, содержится в дождевой воде. Падающие капли дождя забирают двуокись углерода из воздуха и из почвы. Эта двуокись углерода превращает дождевую воду в углекислоту.
Около миллиона лет назад одна капля дождя удержалась на потолке пещеры. Когда вода испарилась, крошечное кольцо извести закристаллизировалось на потолке. Вторая капля, а за ней третья, четвертая и пятая оставили известь на том же месте. Время шло, кольца извести образовывали маленький бугорок, «сосульку». Она продолжала расти.
Другая капля воды упала на пол пещеры. И снова осталась известь. Время шло, тысячи капель падали на то же самое место. Частички извести образовывали что-то похожее на толстую каменную свечку. «Свеча» продолжала расти.
Каменная сосулька на потолке называется сталактитом. Толстая «свеча» на полу называется сталагмитом. Сталактиты и сталагмиты бывают разной высоты, что зависит от степени сырости в пещере, температуры и толщины слоя известняка над пещерой. Некоторые сталактиты вырастают в год по 2 см, на что другим требуется сотня лет.
Часто сталагмиты, растущие вверх, соединяются со сталактитами, растущими вниз, и образуют колонны. Самая большая колонна в Карлсбаде более 30 м высотой. Потолки некоторых пещер покрыты короткими сталактитами, которые выглядят как бахрома. В других пещерах сверкают каменные иголки на стенах. Некоторые сталактиты растут в стороны и вверх так же, как и вниз.
Когда вода перестает попадать в пещеры, сталактиты перестают расти, а пещера считается «мертвой».
Около миллиона лет назад одна капля дождя удержалась на потолке пещеры. Когда вода испарилась, крошечное кольцо извести закристаллизировалось на потолке. Вторая капля, а за ней третья, четвертая и пятая оставили известь на том же месте. Время шло, кольца извести образовывали маленький бугорок, «сосульку». Она продолжала расти.
Другая капля воды упала на пол пещеры. И снова осталась известь. Время шло, тысячи капель падали на то же самое место. Частички извести образовывали что-то похожее на толстую каменную свечку. «Свеча» продолжала расти.
Каменная сосулька на потолке называется сталактитом. Толстая «свеча» на полу называется сталагмитом. Сталактиты и сталагмиты бывают разной высоты, что зависит от степени сырости в пещере, температуры и толщины слоя известняка над пещерой. Некоторые сталактиты вырастают в год по 2 см, на что другим требуется сотня лет.
Часто сталагмиты, растущие вверх, соединяются со сталактитами, растущими вниз, и образуют колонны. Самая большая колонна в Карлсбаде более 30 м высотой. Потолки некоторых пещер покрыты короткими сталактитами, которые выглядят как бахрома. В других пещерах сверкают каменные иголки на стенах. Некоторые сталактиты растут в стороны и вверх так же, как и вниз.
Когда вода перестает попадать в пещеры, сталактиты перестают расти, а пещера считается «мертвой».
Многие факторы определяют, сколько дождя или снега выпадет на земную поверхность. Это температура, высота над уровнем моря, местонахождение горных цепей и т.д.
Вероятно, самое дождливое место в мире — это гора Вайалеале на Гавайях, на острове Кауаи. Среднегодовой уровень количества осадков составляет здесь 1197 см. Черрапунджи в Индии, возможно, занимает второе место по количеству осадков со среднегодовым уровнем от 1079 до 1143 см. Однажды 381 см дождя выпал в Черрапунджи за 5 дней. А в 1861 году количество осадков достигло 2300 см!
Чтобы было более понятно, давайте сравним количество осадков в некоторых городах мира, Лондон получает 61 см осадков в год, Эдинбург — около 68 см, а Кардифф — около 76 см. В Нью-Йорке выпадает около 101 см осадков. Оттава в Канаде получает 86 см, Мадрид — около 43 см и Париж — 55 см. Итак, вы видите, каков контраст Черрапунджи.
Самое засушливое место в мире — это, вероятно, Арика в Чили. Здесь уровень осадков составляет 0,05 см в год. Самое засушливое место б США — Ранчо Гринлэнд в Долине Смерти. Там среднегодовой уровень осадков менее 3,75 см.
В некоторых обширных регионах Земли сильные ливни бывают круглый год. Например, почти каждая точка вдоль экватора получает 152 см и более осадков каждый год. Экватор является точкой соединения двух больших потоков воздуха Повсеместно вдоль экватора воздух, двигающийся вниз с севера, встречается с воздухом, двигающимся вверх с юга.
Существует основное направленное вверх движение горячего воздуха, смешанного с водяным паром. Так как воздух поднимается к холодным высотам, большое количество водяного пара конденсируется и выпадает в качестве дождя.
Большая часть дождя выпадает с наветренной стороны гор. Другая сторона, называемая подветренной, получает намного меньше осадков. Примером являются горы Каскад в Калифорнии. Западные ветры, несущие водяной пар, движутся с Тихого океана. Достигнув берега, воздух поднимается по западным склонам гор, охлаждаясь. Охлаждение вызывает конденсацию водяного пара, который выпадает в виде дождя или снега.
Вероятно, самое дождливое место в мире — это гора Вайалеале на Гавайях, на острове Кауаи. Среднегодовой уровень количества осадков составляет здесь 1197 см. Черрапунджи в Индии, возможно, занимает второе место по количеству осадков со среднегодовым уровнем от 1079 до 1143 см. Однажды 381 см дождя выпал в Черрапунджи за 5 дней. А в 1861 году количество осадков достигло 2300 см!
Чтобы было более понятно, давайте сравним количество осадков в некоторых городах мира, Лондон получает 61 см осадков в год, Эдинбург — около 68 см, а Кардифф — около 76 см. В Нью-Йорке выпадает около 101 см осадков. Оттава в Канаде получает 86 см, Мадрид — около 43 см и Париж — 55 см. Итак, вы видите, каков контраст Черрапунджи.
Самое засушливое место в мире — это, вероятно, Арика в Чили. Здесь уровень осадков составляет 0,05 см в год. Самое засушливое место б США — Ранчо Гринлэнд в Долине Смерти. Там среднегодовой уровень осадков менее 3,75 см.
В некоторых обширных регионах Земли сильные ливни бывают круглый год. Например, почти каждая точка вдоль экватора получает 152 см и более осадков каждый год. Экватор является точкой соединения двух больших потоков воздуха Повсеместно вдоль экватора воздух, двигающийся вниз с севера, встречается с воздухом, двигающимся вверх с юга.
Существует основное направленное вверх движение горячего воздуха, смешанного с водяным паром. Так как воздух поднимается к холодным высотам, большое количество водяного пара конденсируется и выпадает в качестве дождя.
Большая часть дождя выпадает с наветренной стороны гор. Другая сторона, называемая подветренной, получает намного меньше осадков. Примером являются горы Каскад в Калифорнии. Западные ветры, несущие водяной пар, движутся с Тихого океана. Достигнув берега, воздух поднимается по западным склонам гор, охлаждаясь. Охлаждение вызывает конденсацию водяного пара, который выпадает в виде дождя или снега.
Когда мы смотрим на небо и видим там большие тяжелые тучи, мы, вероятно, думаем, что скоро пойдет дождь. И мы склонны думать, что тучи — это единственное, что нужно для того, чтобы пошел дождь. Но в действительности дождь — это результат длительного и сложного процесса. Чтобы пошел дождь, необходимо взаимное влияние Солнца, Земли и атмосферы. Процесс начинается тогда, когда Земля согревается Солнцем. Это вызывает превращение воды в океанах, озерах и реках в водяной пар. Водяной пар смешивается с воздухом. Этот процесс называется парообразованием.
Подымающийся вверх теплый воздух приносит водяной пар в атмосферу. Здесь он распространяется и остывает. После этого теплый воздух отдает часть своего груза невидимого водяного пара, и так образуются облака. Этот процесс называется конденсацией.
Внутри тучи крошечные капельки постепенно становятся все больше и больше по мере того, как они собирают все больше влаги. Наконец капли становятся такими большими, что уже больше не могут удерживаться наверху воздушными течениями, и выпадают на землю в виде дождя.
А теперь давайте посмотрим, почему процесс образования дождя происходит только в определенное время. Первый этап этого процесса — парообразование — происходит практически постоянно в течение дня. Водяной пар поднимается в атмосферу. Но этот невидимый пар не превращается в видимые облака, состоящие из мельчайших капелек, каждый день. Это происходит потому, что пару необходима поверхность, на которой он мог бы сконденсироваться. Если в воздухе нет или очень мало частичек пыли, конденсация не может произойти. Образованию капелек способствуют также маленькие кристаллы льда и снега.
Обычно для того, чтобы пошел дождь, необходимо движение теплых воздушных масс навстречу холодным или наоборот. Теплые воздушные массы содержат облака и влагу, и когда эти теплые массы охлаждаются холодными массами, образуются капельки воды, которые выпадают в виде дождя. Поэтому предсказания погоды всегда упоминают о движении воздушных масс. Они подсказывают нам, будет дождь или нет.
Подымающийся вверх теплый воздух приносит водяной пар в атмосферу. Здесь он распространяется и остывает. После этого теплый воздух отдает часть своего груза невидимого водяного пара, и так образуются облака. Этот процесс называется конденсацией.
Внутри тучи крошечные капельки постепенно становятся все больше и больше по мере того, как они собирают все больше влаги. Наконец капли становятся такими большими, что уже больше не могут удерживаться наверху воздушными течениями, и выпадают на землю в виде дождя.
А теперь давайте посмотрим, почему процесс образования дождя происходит только в определенное время. Первый этап этого процесса — парообразование — происходит практически постоянно в течение дня. Водяной пар поднимается в атмосферу. Но этот невидимый пар не превращается в видимые облака, состоящие из мельчайших капелек, каждый день. Это происходит потому, что пару необходима поверхность, на которой он мог бы сконденсироваться. Если в воздухе нет или очень мало частичек пыли, конденсация не может произойти. Образованию капелек способствуют также маленькие кристаллы льда и снега.
Обычно для того, чтобы пошел дождь, необходимо движение теплых воздушных масс навстречу холодным или наоборот. Теплые воздушные массы содержат облака и влагу, и когда эти теплые массы охлаждаются холодными массами, образуются капельки воды, которые выпадают в виде дождя. Поэтому предсказания погоды всегда упоминают о движении воздушных масс. Они подсказывают нам, будет дождь или нет.
Вода — это соединение двух газов без вкуса, запаха и цвета: она состоит из водорода, очень легкого газа, и кислорода, более тяжелого и активного газа. Вода существует в трех состояниях: как жидкость, как твердое тело (лед) и как газ (водяной пар).
Но когда мы обсуждаем различные качества воды, мы обнаруживаем, что вода, существующая в природе, никогда не бывает совершенно чистой. Она содержит растворенные в ней минеральные соли, газы и живые организмы. Мы очень редко имеем дело с просто «водой». Например, химически чистая вода безвкусная. Но все мы знаем, что у воды всегда есть какой-то привкус. Отчасти этот привкус дает присутствие в воде определенных примесей. Капли дождя, проходя через атмосферу, забирают из нее некоторые газы, через которые они проходят.
Наиболее важный из этих газов — кислород, который позволяет живым организмам существовать под водой. Двуокись углерода — другой важный газ в составе воды. Его наличие в растворе воды (угольная кислота) делает воду способной размывать известняковые породы и образовывать пещеры и впадины.
Действие угольной кислоты в воде растворяет известь и карбонаты магния, что делает воду «жесткой». Жесткая вода не дает хорошую мыльную пену. Если ее вскипятить, то внутри чайника останется известковый налет.
Кроме газов природная вода содержит растворенные в ней соли. Речная и озерная вода содержат также неорганические частицы, которые просто плавают по воде.
Вода существует на Земле в рамках большого энергетического круга. Солнце перемещает воду, испаряя ее из морей и океанов, в воздух. В воздухе водяной пар собирается в облака и выпадает в виде дождя, тумана, снега или росы, и возвращается обратно в море.
Но когда мы обсуждаем различные качества воды, мы обнаруживаем, что вода, существующая в природе, никогда не бывает совершенно чистой. Она содержит растворенные в ней минеральные соли, газы и живые организмы. Мы очень редко имеем дело с просто «водой». Например, химически чистая вода безвкусная. Но все мы знаем, что у воды всегда есть какой-то привкус. Отчасти этот привкус дает присутствие в воде определенных примесей. Капли дождя, проходя через атмосферу, забирают из нее некоторые газы, через которые они проходят.
Наиболее важный из этих газов — кислород, который позволяет живым организмам существовать под водой. Двуокись углерода — другой важный газ в составе воды. Его наличие в растворе воды (угольная кислота) делает воду способной размывать известняковые породы и образовывать пещеры и впадины.
Действие угольной кислоты в воде растворяет известь и карбонаты магния, что делает воду «жесткой». Жесткая вода не дает хорошую мыльную пену. Если ее вскипятить, то внутри чайника останется известковый налет.
Кроме газов природная вода содержит растворенные в ней соли. Речная и озерная вода содержат также неорганические частицы, которые просто плавают по воде.
Вода существует на Земле в рамках большого энергетического круга. Солнце перемещает воду, испаряя ее из морей и океанов, в воздух. В воздухе водяной пар собирается в облака и выпадает в виде дождя, тумана, снега или росы, и возвращается обратно в море.
Водопад — это поток воды, который неожиданно падает с высоты на более низкий уровень. Если объем воды небольшой, водопад называется «каскадом», если большой — «катарактом».
Некоторые водопады падают с высоты в сотни метров единым узким потоком. Другие известны своей шириной или необъятным количеством воды, переливающейся через уступ. Вот несколько самых больших водопадов в мире:
Водопады Анхель в горах Гвианы в Венесуэле — самые большие в мире (980 м) с самым длинным непрерывным падением в 807 м. Водопады были открыты в 1935 году американским авиатором Джеймсом Эйнджелом.
Самый длинный водопад в Азии — водопад Герсоппа в Индии. Это катаракт, падающий по четырем уступам, с общей длиной в 252 м. Водопад, через который проходит самое большое количество воды — Гуайра, на границе Бразилии и Парагвая. Он несет более 13 309 куб. м воды в секунду и состоит из 18 отдельных водопадов с общей высотой падения воды около 60 м.
Один из самых высоких в мире — водопад Риббон в Йосемитском национальном парке в Калифорнии. Это узкий поток воды, падающий со скалы высотой 490 м в реку Мерсед.
Второй по величине водопад в мире был найден в Южной Африке. Это водопад Тугела. Вода падает с высоты 853 м в пять этапов.
И, конечно, среди самых известных в мире — Ниагарский водопад. Он располагается на реке Ниагара, в 25 километрах от города Буффало, штат Нью-Йорк. На самом деле Ниагарский водопад состоит из двух катарактов — Подкова (или Канадский водопад) и Американский водопад. Граница между Канадой и Соединенными Штатами проходит через центр водопада Подкова.
Около 94 процентов воды реки Ниагара, примерно 37 854 040 литров, переливается через водопад Подкова каждую минуту.
Некоторые водопады падают с высоты в сотни метров единым узким потоком. Другие известны своей шириной или необъятным количеством воды, переливающейся через уступ. Вот несколько самых больших водопадов в мире:
Водопады Анхель в горах Гвианы в Венесуэле — самые большие в мире (980 м) с самым длинным непрерывным падением в 807 м. Водопады были открыты в 1935 году американским авиатором Джеймсом Эйнджелом.
Самый длинный водопад в Азии — водопад Герсоппа в Индии. Это катаракт, падающий по четырем уступам, с общей длиной в 252 м. Водопад, через который проходит самое большое количество воды — Гуайра, на границе Бразилии и Парагвая. Он несет более 13 309 куб. м воды в секунду и состоит из 18 отдельных водопадов с общей высотой падения воды около 60 м.
Один из самых высоких в мире — водопад Риббон в Йосемитском национальном парке в Калифорнии. Это узкий поток воды, падающий со скалы высотой 490 м в реку Мерсед.
Второй по величине водопад в мире был найден в Южной Африке. Это водопад Тугела. Вода падает с высоты 853 м в пять этапов.
И, конечно, среди самых известных в мире — Ниагарский водопад. Он располагается на реке Ниагара, в 25 километрах от города Буффало, штат Нью-Йорк. На самом деле Ниагарский водопад состоит из двух катарактов — Подкова (или Канадский водопад) и Американский водопад. Граница между Канадой и Соединенными Штатами проходит через центр водопада Подкова.
Около 94 процентов воды реки Ниагара, примерно 37 854 040 литров, переливается через водопад Подкова каждую минуту.
Озера — это удаленные от моря водоемы, которые заполнили впадины на поверхности Земли. Эти впадины называются бассейнами.
Озера образовались в результате стекания воды в низкие места. Озера пополняются в основном за счет дождей и тающего снега. Вода попадает в бассейн озера с ручьями, малыми и большими реками, подземными источниками и грунтовыми водами.
Бассейны озер образуются несколькими способами. Некоторые озера — результат разлома и деформации земной коры. Озеро Верхнее в Северной Америке — пример такого озера.
Иногда озера создаются вулканами. Поток лавы может заблокировать сток вод в долины и образовать бассейн. Иногда кратер потухшего вулкана заполняется водой. Кратерное озеро в южной части штата Орегон — пример такого озера.
Многие озера занимают бассейны, образованные ледниковой эрозией. Все Великие Озера, кроме озера Верхнего и озера Виннипег в Канаде — примеры озер ледникового происхождения.
На побережьях волны и прибрежные течения иногда отрезают узкие морские заливы от моря и со временем образуют озера из заливов и устьев рек. Иногда главное течение реки может само построить себе долину, откладывая наносы (грязь и почву) во время разлива. В результате долины притоков заполняются и образуют озера.
В местах, где под почвой находится известняк, грунтовые воды растворяют и уносят его, создавая большие подземные пространства, из которых образуются бассейны озер. В штате Флорида много озер такого типа.
Озера также могут быть созданы искусственно. Если на реке построить дамбу, она заблокирует поток воды и образуется озеро. Озеро Мид появилось, когда построили Гуверскую дамбу на реке Колорадо.
Озера образовались в результате стекания воды в низкие места. Озера пополняются в основном за счет дождей и тающего снега. Вода попадает в бассейн озера с ручьями, малыми и большими реками, подземными источниками и грунтовыми водами.
Бассейны озер образуются несколькими способами. Некоторые озера — результат разлома и деформации земной коры. Озеро Верхнее в Северной Америке — пример такого озера.
Иногда озера создаются вулканами. Поток лавы может заблокировать сток вод в долины и образовать бассейн. Иногда кратер потухшего вулкана заполняется водой. Кратерное озеро в южной части штата Орегон — пример такого озера.
Многие озера занимают бассейны, образованные ледниковой эрозией. Все Великие Озера, кроме озера Верхнего и озера Виннипег в Канаде — примеры озер ледникового происхождения.
На побережьях волны и прибрежные течения иногда отрезают узкие морские заливы от моря и со временем образуют озера из заливов и устьев рек. Иногда главное течение реки может само построить себе долину, откладывая наносы (грязь и почву) во время разлива. В результате долины притоков заполняются и образуют озера.
В местах, где под почвой находится известняк, грунтовые воды растворяют и уносят его, создавая большие подземные пространства, из которых образуются бассейны озер. В штате Флорида много озер такого типа.
Озера также могут быть созданы искусственно. Если на реке построить дамбу, она заблокирует поток воды и образуется озеро. Озеро Мид появилось, когда построили Гуверскую дамбу на реке Колорадо.
Когда мы говорим о различных местах на земле, что они «жаркие» или «холодные», мы говорим о климате. Вообще климат определяется количеством тепла от Солнца.
Именно солнечное тепло согревает землю, океаны и атмосферу. Оно же и втягивает влагу в атмосферу и таким образом вызывает дождь.
Солнечное тепло вызывает разницу в атмосферном давлении, которая создает ветры, а солнечное тепло и ветры вызывают океанские течения. Поэтому, если обсуждать климат в определенном месте, важно иметь в виду влияние солнечного тепла на эту территорию.
Из-за того что поверхность Земли круглая, самый большой солнечный тепловой эффект наблюдается на экваторе, самый маленький — на полюсах. На экваторе лучи солнца падают на землю вертикально. Над и под экватором лучи падают на землю под углом, наклонно. Это значит, что эти зоны над и под экватором, или умеренные зоны, получают меньше солнечных лучей, чем зона экватора, или тропическая зона. Регионы, дальше всего удаленные от экватора, получают наименьшее количество тепла.
Когда лучи падают на Землю под углом, они проходят через более толстый слой атмосферы, и часть тепла поглощается воздухом — в этом другая причина, почему другие зоны получают меньше тепла.
Все эти причины делают экватор самым жарким районом на Земле. Правда, здесь мы говорим о том, что называется «солнечным климатом», то есть климатом, зависящим только от солнечного тепла. Однако существует много других факторов, которые определяют так называемый «физический климат» — климат, который действительно обнаруживается на Земле.
Наиболее важными из этих факторов являются вода, земля и высота над уровнем моря. Воды океанов и океанские течения, существование больших пространств суши, высота местности над уровнем моря — все это вместе создает различные климаты, невзирая на местоположение на Земле. Поэтому в определенное время в каком-то месте, далеком от экватора, может быть жарче, чем на самом экваторе, хотя экваториальный район является самым жарким на Земле.
Именно солнечное тепло согревает землю, океаны и атмосферу. Оно же и втягивает влагу в атмосферу и таким образом вызывает дождь.
Солнечное тепло вызывает разницу в атмосферном давлении, которая создает ветры, а солнечное тепло и ветры вызывают океанские течения. Поэтому, если обсуждать климат в определенном месте, важно иметь в виду влияние солнечного тепла на эту территорию.
Из-за того что поверхность Земли круглая, самый большой солнечный тепловой эффект наблюдается на экваторе, самый маленький — на полюсах. На экваторе лучи солнца падают на землю вертикально. Над и под экватором лучи падают на землю под углом, наклонно. Это значит, что эти зоны над и под экватором, или умеренные зоны, получают меньше солнечных лучей, чем зона экватора, или тропическая зона. Регионы, дальше всего удаленные от экватора, получают наименьшее количество тепла.
Когда лучи падают на Землю под углом, они проходят через более толстый слой атмосферы, и часть тепла поглощается воздухом — в этом другая причина, почему другие зоны получают меньше тепла.
Все эти причины делают экватор самым жарким районом на Земле. Правда, здесь мы говорим о том, что называется «солнечным климатом», то есть климатом, зависящим только от солнечного тепла. Однако существует много других факторов, которые определяют так называемый «физический климат» — климат, который действительно обнаруживается на Земле.
Наиболее важными из этих факторов являются вода, земля и высота над уровнем моря. Воды океанов и океанские течения, существование больших пространств суши, высота местности над уровнем моря — все это вместе создает различные климаты, невзирая на местоположение на Земле. Поэтому в определенное время в каком-то месте, далеком от экватора, может быть жарче, чем на самом экваторе, хотя экваториальный район является самым жарким на Земле.
«Огни святого Эльма» — одно из многих интересных явлений, связанных с молнией, и, чтобы понять его, мы должны вспомнить, что происходит, когда сверкает молния.
Все дело в наличии двух типов частиц — положительных и отрицательных. Эти два типа частиц сильно притягиваются друг к другу, и если их разъединить, то они будут стремиться соединиться вновь.
Когда в туче создается сильный отрицательный или положительный заряд, он вызывает противоположный заряд внизу, на земле. Электроны начинают перемещаться из области отрицательного заряда в область положительного. Они постепенно образуют канал или каналы заряженных частиц между землей и тучей, и когда образуется большая волна электронов, происходит вспышка молнии.
Теперь предположите, что вместо того, чтобы позволить зарядам накапливаться до тех пор, пока напряжение не станет слишком большим и не должно будет быть разряжено, был бы другой способ помочь зарядам снизу, с земли просочиться к верхним. Вместо разряда молнии заряд просочился бы в виде «щеточного разряда». Именно так, кстати, и действует громоотвод. Вершина громоотвода помогает электронам просочиться.
«Огонь святого Эльма» — это свечение, которое сопровождает подобный «щеточный разряд» атмосферного электричества. Оно появляется в виде огонька на концах остроконечных объектов, таких, как церковные колокольни или мачты кораблей, причем здесь оно появляется чаще всего во время шторма. Мы обычно слышим при этом потрескивание или шипение.
Другое место, где часто наблюдается «огонь святого Эльма»,— это лопасти пропеллеров, а также на концах крыльев, ветровых стеклах и на носу самолетов, когда они летят в сухую снежную погоду или недалеко от того места, где идет гроза. Этот электрический заряд может быть иногда настолько сильным, что вызывает электростатические явления в радио этого самолета.
Все дело в наличии двух типов частиц — положительных и отрицательных. Эти два типа частиц сильно притягиваются друг к другу, и если их разъединить, то они будут стремиться соединиться вновь.
Когда в туче создается сильный отрицательный или положительный заряд, он вызывает противоположный заряд внизу, на земле. Электроны начинают перемещаться из области отрицательного заряда в область положительного. Они постепенно образуют канал или каналы заряженных частиц между землей и тучей, и когда образуется большая волна электронов, происходит вспышка молнии.
Теперь предположите, что вместо того, чтобы позволить зарядам накапливаться до тех пор, пока напряжение не станет слишком большим и не должно будет быть разряжено, был бы другой способ помочь зарядам снизу, с земли просочиться к верхним. Вместо разряда молнии заряд просочился бы в виде «щеточного разряда». Именно так, кстати, и действует громоотвод. Вершина громоотвода помогает электронам просочиться.
«Огонь святого Эльма» — это свечение, которое сопровождает подобный «щеточный разряд» атмосферного электричества. Оно появляется в виде огонька на концах остроконечных объектов, таких, как церковные колокольни или мачты кораблей, причем здесь оно появляется чаще всего во время шторма. Мы обычно слышим при этом потрескивание или шипение.
Другое место, где часто наблюдается «огонь святого Эльма»,— это лопасти пропеллеров, а также на концах крыльев, ветровых стеклах и на носу самолетов, когда они летят в сухую снежную погоду или недалеко от того места, где идет гроза. Этот электрический заряд может быть иногда настолько сильным, что вызывает электростатические явления в радио этого самолета.
Если бы земная кора не была достаточно твердой, она бы сотрясалась и постоянно поднималась и опускалась. Но в некоторых местах земной коры породы не сильно прижаты друг к другу — здесь и происходит разлом. По линии разлома одна горная масса трется о другую с очень большой силой. Энергия этого трения переходит в колебания в самих горных породах — и происходит землетрясение.
Есть два способа описать землетрясение с точки зрения его размеров. Во-первых, учитывается, какова сила землетрясения, во-вторых, определяется какой ущерб оно принесло. Поскольку потеря человеческих жизней и разрушения беспокоят людей больше, чем технические измерения, то среди самых больших землетрясений люди помнят именно те, в которых погибло больше людей.
Наиболее известным из происшедших в Северной Америке было землетрясение в Сан-Франциско в 1906 году. Вслед за землетрясением начался большой пожар. Погибло 700 человек, ущерб составил около 425 миллионов долларов. Не так давно, в феврале 1971, года произошло сильное землетрясение в районе Лос-Анджелеса, ущерб от разрушения домов, служб и дорог составил многие миллионы долларов.
Одно из самых известных землетрясений в Европе было в Лиссабоне, в Португалии, в 1755 году. Город был разрушен, погибло 30 000 человек. В 1908 году в Калабрии и на Сицилии в результате землетрясения погибло около 75 000 человек. В 1915 году в Центральной Италии пострадали сотни городов и деревень, 30 000 человек погибли.
Два больших землетрясения, принесших громадный ущерб, произошли в Токио (Япония) и в провинции Кансю в Китае. Токийское землетрясение 1923 года унесло жизни более чем ста тысяч человек, кроме Токио, пострадал и город Иокогама. Китайское землетрясение охватило территорию площадью более 480 кв. км и унесло жизни более двадцати тысяч человек.
Однако землетрясение может быть сильным, но небольшим по разрушениям. Например, значительное землетрясение было зарегистрировано в США, но едва ли многие люди о нем знают. Оно произошло рядом с городом Нью-Мадрид (в штат Миссури) в 1811 и 1812 годах. Ощущались 1874 отдельных подземных толчка, а некоторые из них были зарегистрированы на расстоянии 640 км от эпицентра. Но эта территория была слабо населена, и поэтому ущерб был незначителен.
Есть два способа описать землетрясение с точки зрения его размеров. Во-первых, учитывается, какова сила землетрясения, во-вторых, определяется какой ущерб оно принесло. Поскольку потеря человеческих жизней и разрушения беспокоят людей больше, чем технические измерения, то среди самых больших землетрясений люди помнят именно те, в которых погибло больше людей.
Наиболее известным из происшедших в Северной Америке было землетрясение в Сан-Франциско в 1906 году. Вслед за землетрясением начался большой пожар. Погибло 700 человек, ущерб составил около 425 миллионов долларов. Не так давно, в феврале 1971, года произошло сильное землетрясение в районе Лос-Анджелеса, ущерб от разрушения домов, служб и дорог составил многие миллионы долларов.
Одно из самых известных землетрясений в Европе было в Лиссабоне, в Португалии, в 1755 году. Город был разрушен, погибло 30 000 человек. В 1908 году в Калабрии и на Сицилии в результате землетрясения погибло около 75 000 человек. В 1915 году в Центральной Италии пострадали сотни городов и деревень, 30 000 человек погибли.
Два больших землетрясения, принесших громадный ущерб, произошли в Токио (Япония) и в провинции Кансю в Китае. Токийское землетрясение 1923 года унесло жизни более чем ста тысяч человек, кроме Токио, пострадал и город Иокогама. Китайское землетрясение охватило территорию площадью более 480 кв. км и унесло жизни более двадцати тысяч человек.
Однако землетрясение может быть сильным, но небольшим по разрушениям. Например, значительное землетрясение было зарегистрировано в США, но едва ли многие люди о нем знают. Оно произошло рядом с городом Нью-Мадрид (в штат Миссури) в 1811 и 1812 годах. Ощущались 1874 отдельных подземных толчка, а некоторые из них были зарегистрированы на расстоянии 640 км от эпицентра. Но эта территория была слабо населена, и поэтому ущерб был незначителен.
Поскольку ученые (даже с помощью приборов) не могут проникнуть очень глубоко в недра Земли, они вынуждены использовать другие методы исследования ее внутреннего содержания.
Один из этих методов — изучение вулканических извержений. Они выбрасывают на поверхность раскаленные газы и расплавленные горные породы, что указывает на то, что внутри Земли очень жарко. Другой метод — изучение землетрясений. Волны, возникающие во время землетрясений, создают подобие рентгеновского снимка внутренней части Земли.
Когда происходит землетрясение, различные типы колебаний распространяются во всех направлениях через горные породы. Эти волны называются сейсмическими волнами. Они проходят через разные материалы с разной скоростью, а их направление изменяется, когда они идут от одного вида горной породы к другому. Изучая эти волны с помощью очень чувствительных приборов, ученые могут узнать, что находится внутри Земли. Они заметили, что на глубине 2880 км происходит резкое изменение направления движения сейсмических волн. Одни типы волн изменяют направление, другие полностью гасятся. Поэтому на этой глубине должно быть изменение материала. Ударные волны от землетрясения достигают разных сейсмических станций в разное время. Отчасти это происходит из-за материала, через который проходят волны. В этом другой ключ к разгадке того, что находится внутри Земли.
Вот лишь краткий ответ на вопрос, что находится внутри Земли: верхний слой, кора, состоит из твердых горных пород. Ее толщина составляет около 48 км под континентами и 5 км под океанами.
Под корой находится мантия, которая также состоит из твердых пород. Она уходит вглубь на 2880 км. Внутренняя часть Земли — ядро. Существует внешнее жидкое ядро, в основном состоящее из расплавленного железа и никеля, внутри которого находится внутреннее твердое металлическое ядро, диаметр его около 2560 км
Один из этих методов — изучение вулканических извержений. Они выбрасывают на поверхность раскаленные газы и расплавленные горные породы, что указывает на то, что внутри Земли очень жарко. Другой метод — изучение землетрясений. Волны, возникающие во время землетрясений, создают подобие рентгеновского снимка внутренней части Земли.
Когда происходит землетрясение, различные типы колебаний распространяются во всех направлениях через горные породы. Эти волны называются сейсмическими волнами. Они проходят через разные материалы с разной скоростью, а их направление изменяется, когда они идут от одного вида горной породы к другому. Изучая эти волны с помощью очень чувствительных приборов, ученые могут узнать, что находится внутри Земли. Они заметили, что на глубине 2880 км происходит резкое изменение направления движения сейсмических волн. Одни типы волн изменяют направление, другие полностью гасятся. Поэтому на этой глубине должно быть изменение материала. Ударные волны от землетрясения достигают разных сейсмических станций в разное время. Отчасти это происходит из-за материала, через который проходят волны. В этом другой ключ к разгадке того, что находится внутри Земли.
Вот лишь краткий ответ на вопрос, что находится внутри Земли: верхний слой, кора, состоит из твердых горных пород. Ее толщина составляет около 48 км под континентами и 5 км под океанами.
Под корой находится мантия, которая также состоит из твердых пород. Она уходит вглубь на 2880 км. Внутренняя часть Земли — ядро. Существует внешнее жидкое ядро, в основном состоящее из расплавленного железа и никеля, внутри которого находится внутреннее твердое металлическое ядро, диаметр его около 2560 км
Так как Земля подвешена в космосе, «взвесить» ее — совсем не то же самое, что положить предмет на чашу весов. Когда мы говорим о весе Земли, мы имеем в виду количество вещества, из которого она состоит. Это называется массой.
Масса Земли — около 5,976 секстиллионов тонн. Чтобы вы могли наглядно себе представить, как выглядит что число, то вот оно: 5 976 000 000 000 000 000 000. Как же ученые подсчитали, что масса Земли именно такая.
Чтобы сделать это, они использовали принцип, основанный на том, что два тела притягиваются друг к другу. От этого зависит сила гравитации. Проще говоря, закон гравитации гласит, что два тела притягиваются друг к другу с силой, которая зависит от их массы и расстояния между ними. Чем больше предметы, тем значительнее сила, которая притягивает их друг к другу. Чем дальше друг от друга они находятся, тем эта сила меньше.
Чтобы измерить вес Земли, нужно сделать следующее: маленький груз подвесить на нити, затем измерить точное положение этого груза. Потом тонну свинца надо расположить рядом с подвешенным грузом. Между ним и свинцом возникнет притяжение, в результате которого груз чуть-чуть отклоняется в сторону. (В действительности это отклонение составляет меньше чем 0,000 02 мм, то есть вы видите, насколько точным должно быть измерение.)
После этих измерений ученые могут с помощью математики вычислить вес Земли. Они измерили силу земного притяжения по отношению к весу, и измерили силу, с которой тонна свинца притягивает подвешенный груз. Относительная разница может быть вычислена, она и скажет о массе Земли.
Чем же создается эта масса? Сюда входит кора из твердых горных пород, затем слой, называемый мантией, который также представляет собой твердые породы и уходит вглубь на 2880 км, затем идет внутренняя часть — ядро (около 3360 км в радиусе). Ядро жидкое из-за высокой температуры в центре Земли.
Масса Земли — около 5,976 секстиллионов тонн. Чтобы вы могли наглядно себе представить, как выглядит что число, то вот оно: 5 976 000 000 000 000 000 000. Как же ученые подсчитали, что масса Земли именно такая.
Чтобы сделать это, они использовали принцип, основанный на том, что два тела притягиваются друг к другу. От этого зависит сила гравитации. Проще говоря, закон гравитации гласит, что два тела притягиваются друг к другу с силой, которая зависит от их массы и расстояния между ними. Чем больше предметы, тем значительнее сила, которая притягивает их друг к другу. Чем дальше друг от друга они находятся, тем эта сила меньше.
Чтобы измерить вес Земли, нужно сделать следующее: маленький груз подвесить на нити, затем измерить точное положение этого груза. Потом тонну свинца надо расположить рядом с подвешенным грузом. Между ним и свинцом возникнет притяжение, в результате которого груз чуть-чуть отклоняется в сторону. (В действительности это отклонение составляет меньше чем 0,000 02 мм, то есть вы видите, насколько точным должно быть измерение.)
После этих измерений ученые могут с помощью математики вычислить вес Земли. Они измерили силу земного притяжения по отношению к весу, и измерили силу, с которой тонна свинца притягивает подвешенный груз. Относительная разница может быть вычислена, она и скажет о массе Земли.
Чем же создается эта масса? Сюда входит кора из твердых горных пород, затем слой, называемый мантией, который также представляет собой твердые породы и уходит вглубь на 2880 км, затем идет внутренняя часть — ядро (около 3360 км в радиусе). Ядро жидкое из-за высокой температуры в центре Земли.
Давайте рассмотрим их одна за другой и посмотрим, что получится в каждом случае.
Меркурий вращается вокруг Солнца за 88 дней. Ученые полагают, что Меркурий обращается вокруг своей оси за 58 или 59 дней. Это значит, что он имеет солнечный день (период, включающий день и ночь) длиной около 180 земных дней.
Венера, как это было открыто не так давно, обращается вокруг своей оси за 243 дня. Марс вращается почти с такой же скоростью, что и Земля. А так как его ось тоже наклонена, то он имеет такие же времена года, что и Земля. Юпитер, самая большая из всех планет, вращается очень быстро. Ему требуется меньше 10 часов, чтобы сделать один оборот вокруг своей оси. Сатурн также вращается очень быстро. Ему требуется только 10 часов 14 минут, чтобы обернуться вокруг своей оси. Уран вращается очень странно, так как практически лежит на боку.
Нептун и Плутон — самые дальние и наименее изученные планеты по сравнению с другими. Нептун поворачивается вокруг своей оси за 18,5 часов, а его путь вокруг Солнца занимает почти 165 лет. Плутону же требуется почти 249 земных лет, чтобы обойти вокруг Солнца один раз.
Сейчас, когда мы живем в век космических исследований, ученые узнают больше о другой части Солнечной системы, чем человек когда-либо знал, и человечество постоянно приобретает больше знаний о движении других планет.
Меркурий вращается вокруг Солнца за 88 дней. Ученые полагают, что Меркурий обращается вокруг своей оси за 58 или 59 дней. Это значит, что он имеет солнечный день (период, включающий день и ночь) длиной около 180 земных дней.
Венера, как это было открыто не так давно, обращается вокруг своей оси за 243 дня. Марс вращается почти с такой же скоростью, что и Земля. А так как его ось тоже наклонена, то он имеет такие же времена года, что и Земля. Юпитер, самая большая из всех планет, вращается очень быстро. Ему требуется меньше 10 часов, чтобы сделать один оборот вокруг своей оси. Сатурн также вращается очень быстро. Ему требуется только 10 часов 14 минут, чтобы обернуться вокруг своей оси. Уран вращается очень странно, так как практически лежит на боку.
Нептун и Плутон — самые дальние и наименее изученные планеты по сравнению с другими. Нептун поворачивается вокруг своей оси за 18,5 часов, а его путь вокруг Солнца занимает почти 165 лет. Плутону же требуется почти 249 земных лет, чтобы обойти вокруг Солнца один раз.
Сейчас, когда мы живем в век космических исследований, ученые узнают больше о другой части Солнечной системы, чем человек когда-либо знал, и человечество постоянно приобретает больше знаний о движении других планет.