Наука » Медицина » Гистология
Это непостоянные структурные компоненты клетки. Они возникают и исчезают в зависимости от функционального и метаболического состояния клетки, являются продуктами её жизнедеятельности и отражают функциональное состояние клетки в момент исследования. Включения подразделяют на несколько групп: трофические, секреторные, экскреторные, пигментные и др.
Трофические включения – запас питательных веществ клетки. Различают углеводные, жировые и белковые включения. Например, глыбки гликогена и капли жира в клетках печени – запас углеводов и липидов, который образуется в организме после еды и исчезает при голодании. Желточные включения (липопротеидные гранулы) в яйцеклетке – запас питательных веществ, необходимый для развития зародыша в первые дни его возникновения.
Секреторные включения – гранулы и капли веществ, синтезированных в клетке для нужд организма (например, пищеварительные ферменты для желудочного и кишечного сока), которые накапливаются в вакуолях комплекса Гольджи апикальной части клетки и выводятся из клетки путём экзоцитоза.
Экскреторные включения – гранулы и капли веществ, вредных для организма, которые выводятся клетками во внешнюю среду с мочой и калом. Например, экскреторные включения в клетках канальцев почек.
Пигментные включения – гранулы или капли веществ, придающих клетке цвет. Например, глыбки белка меланина, имеющего коричневый цвет в меланоцитах кожи, или гемоглобин в эритроцитах.
Трофические включения – запас питательных веществ клетки. Различают углеводные, жировые и белковые включения. Например, глыбки гликогена и капли жира в клетках печени – запас углеводов и липидов, который образуется в организме после еды и исчезает при голодании. Желточные включения (липопротеидные гранулы) в яйцеклетке – запас питательных веществ, необходимый для развития зародыша в первые дни его возникновения.
Секреторные включения – гранулы и капли веществ, синтезированных в клетке для нужд организма (например, пищеварительные ферменты для желудочного и кишечного сока), которые накапливаются в вакуолях комплекса Гольджи апикальной части клетки и выводятся из клетки путём экзоцитоза.
Экскреторные включения – гранулы и капли веществ, вредных для организма, которые выводятся клетками во внешнюю среду с мочой и калом. Например, экскреторные включения в клетках канальцев почек.
Пигментные включения – гранулы или капли веществ, придающих клетке цвет. Например, глыбки белка меланина, имеющего коричневый цвет в меланоцитах кожи, или гемоглобин в эритроцитах.
Наука » Медицина » Гистология
Микроворсинки – мелкие (0,1-1 мкм) неподвижные выпячивания цитоплазмы апикальной части клетки, покрытые клеточной мембраной. Они значительно увеличивают площадь поверхности клетки, облегчая процессы всасывания веществ из окружающей среды (например, микроворсинки эпителия кишечника).
Мерцательные реснички – выпячивания цитолеммы (длиной 5-10 мкм, толщиной 0,2 мкм) апикальной части клетки. Внутри реснички расположена осевая нить, состоящая из 9 дуплетов (пар) периферических микротрубочек и одной пары центральных микротрубочек, связанных с периферическими белковыми нитями. В основании реснички расположено базальное тельце, по строению сходное с центриолью.
Жгутики – по строению сходны с ресничками, но гораздо крупнее (имеют длину 50 мкм и толщину 0,2 – 0,5 мкм).
Миофибриллы – упорядоченно расположенные в поперечно-полосатых мышечных волокнах комплексы нитей актина и миозина. Обеспечивают сокращение мышечных волокон.
Нейрофибриллы – пучки нейротрубочек и нейрофиламентов в нервных клетках. Обеспечивают транспорт веществ в нервных клетках.
Акросомы сперматозоидов – преобразованный комплекс Гольджи, предназначенных для разрушения оболочки яйцеклетки при оплодотворении.
Мерцательные реснички – выпячивания цитолеммы (длиной 5-10 мкм, толщиной 0,2 мкм) апикальной части клетки. Внутри реснички расположена осевая нить, состоящая из 9 дуплетов (пар) периферических микротрубочек и одной пары центральных микротрубочек, связанных с периферическими белковыми нитями. В основании реснички расположено базальное тельце, по строению сходное с центриолью.
Жгутики – по строению сходны с ресничками, но гораздо крупнее (имеют длину 50 мкм и толщину 0,2 – 0,5 мкм).
Миофибриллы – упорядоченно расположенные в поперечно-полосатых мышечных волокнах комплексы нитей актина и миозина. Обеспечивают сокращение мышечных волокон.
Нейрофибриллы – пучки нейротрубочек и нейрофиламентов в нервных клетках. Обеспечивают транспорт веществ в нервных клетках.
Акросомы сперматозоидов – преобразованный комплекс Гольджи, предназначенных для разрушения оболочки яйцеклетки при оплодотворении.
Наука » Медицина » Гистология
Цитоскелет представляет собой сложную динамичную трёхмерную сеть микротрубочек, микрофибрилл и микрофиламентов, которая обеспечивает: 1) поддержание и изменение формы клетки, 2) распределение и перемещение компонентов клетки, 3) транспорт веществ в клетку и из неё, 4) подвижность клетки, 5) участвует в межклеточных соединениях.
Микротрубочки имеют толщину 24 нм и длину несколько микрон. Толщина стенки микротрубочки 5 нм, а диаметр просвета соответственно 14 нм. Состоят из 13 тубулиновых протофибрилл, идущих по спирали. Микротрубочки входят в состав веретена деления и обеспечивают расхождение хромосом во время митоза, поддерживают форму клетки и обеспечивают её подвижность, участвуют в транспорте макромолекул в клетке. С микротрубочками связан белок кинезин, который представляет собой фермент, расщепляющий АТФ и преобразующий энергию её распада в механическую энергию. Одним концом молекула кинезина связана с определённой органеллой, а другой с помощью энергии АТФ скользит вдоль микротрубочки, перемещая органеллу в цитоплазме.
Микротрубочки представляют собой лабильную систему, в которой непрерывно происходит диссоциация (разрушение) одних микротрубочек и сборка (образование) других. Местом образования микротрубочек (центрами организации микротрубочек) являются мелкие сферические тельца сателлиты. Они расположены в базальных тельцах ресничек и клеточном центре.
Микротрубочки имеют толщину 24 нм и длину несколько микрон. Толщина стенки микротрубочки 5 нм, а диаметр просвета соответственно 14 нм. Состоят из 13 тубулиновых протофибрилл, идущих по спирали. Микротрубочки входят в состав веретена деления и обеспечивают расхождение хромосом во время митоза, поддерживают форму клетки и обеспечивают её подвижность, участвуют в транспорте макромолекул в клетке. С микротрубочками связан белок кинезин, который представляет собой фермент, расщепляющий АТФ и преобразующий энергию её распада в механическую энергию. Одним концом молекула кинезина связана с определённой органеллой, а другой с помощью энергии АТФ скользит вдоль микротрубочки, перемещая органеллу в цитоплазме.
Микротрубочки представляют собой лабильную систему, в которой непрерывно происходит диссоциация (разрушение) одних микротрубочек и сборка (образование) других. Местом образования микротрубочек (центрами организации микротрубочек) являются мелкие сферические тельца сателлиты. Они расположены в базальных тельцах ресничек и клеточном центре.
Наука » Медицина » Гистология
Органеллы, не имеющие мембранного строения
Рибосомы – рибонуклеопротеидные гранулы размером 25 нм. Состоят из двух субъединиц: малой (10 нм) и большой (15 нм), между которыми при биосинтезе белка (трансляцией) располагается нить информационной РНК. При этом малая субъединица связывается с РНК, а большая – катализирует образование полипептидных цепей. Субъединицы рибосом образуются в ядрышках, а затем выходят из ядра в цитоплазму через ядерные поры. Сборка рибосом из их субъединиц происходит перед началом синтеза белка, а по завершению синтеза полипептидной цепочки они опять распадаются.
В синтетически активной клетке содержится несколько миллионов рибосом, которые образуют около 5% её сухой массы. Различают свободные рибосомы (не связаны с мембранами и расположены в гиалоплазме во взвешенном состоянии) и несвободные рибосомы (связанные с мембранами цитоплазматической сети). Рибосомы могут располагаться по одиночке (в этом случае они функционально неактивны), но чаще связаны в цепочки, которые нанизаны, как бусинки, на нитевидные молекулы информационной РНК (полирибосомы, полисомы). Свободные рибосомы синтезируют белки для собственных нужд клетки, а несвободные – на экспорт.
Рибосомы – рибонуклеопротеидные гранулы размером 25 нм. Состоят из двух субъединиц: малой (10 нм) и большой (15 нм), между которыми при биосинтезе белка (трансляцией) располагается нить информационной РНК. При этом малая субъединица связывается с РНК, а большая – катализирует образование полипептидных цепей. Субъединицы рибосом образуются в ядрышках, а затем выходят из ядра в цитоплазму через ядерные поры. Сборка рибосом из их субъединиц происходит перед началом синтеза белка, а по завершению синтеза полипептидной цепочки они опять распадаются.
В синтетически активной клетке содержится несколько миллионов рибосом, которые образуют около 5% её сухой массы. Различают свободные рибосомы (не связаны с мембранами и расположены в гиалоплазме во взвешенном состоянии) и несвободные рибосомы (связанные с мембранами цитоплазматической сети). Рибосомы могут располагаться по одиночке (в этом случае они функционально неактивны), но чаще связаны в цепочки, которые нанизаны, как бусинки, на нитевидные молекулы информационной РНК (полирибосомы, полисомы). Свободные рибосомы синтезируют белки для собственных нужд клетки, а несвободные – на экспорт.
Наука » Медицина » Гистология
Органеллы
Это постоянные, обязательные структурные компоненты клетки (постоянно присутствуют во всех клетках, без них клетка не может существовать). Они имеют определённое строение и специализированы на выполнении определённых функций. Органеллы подразделяются на органеллы общего значения и органеллы специального значения. По строению, они делятся на мембранные (образованы биологическими мембранами) и немебранные (в их состав мембраны не входят).
Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии, рибосомы, клеточный центр, компоненты цитоскелета.
Органеллы специального значения имеются лишь в некоторых клетках и обеспечивают выполнение их специализированных функций. К ним относят микроворсинки, мерцательные реснички, жгутики, тонофибриллы, миофибриллы, нейрофибриллы.
Органеллы, имеющие мембранное строение
Эндоплазматическая сеть – трёхмерная замкнутая сеть канальцев, трубочек, цистерн диаметром от 20 до 1000 нм, расположенных в гиалоплазме клетки. Они связаны с цитолеммой и перинуклеарным пространством. В эндоплазматической сети происходит синтез сложных органических соединений в клетке и их транспорт в нужные участки клетки, к другим органеллам.
Различают гранулярную (шероховатую) и агранулярную (гладкую) эндоплазматическую сеть.
Это постоянные, обязательные структурные компоненты клетки (постоянно присутствуют во всех клетках, без них клетка не может существовать). Они имеют определённое строение и специализированы на выполнении определённых функций. Органеллы подразделяются на органеллы общего значения и органеллы специального значения. По строению, они делятся на мембранные (образованы биологическими мембранами) и немебранные (в их состав мембраны не входят).
Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии, рибосомы, клеточный центр, компоненты цитоскелета.
Органеллы специального значения имеются лишь в некоторых клетках и обеспечивают выполнение их специализированных функций. К ним относят микроворсинки, мерцательные реснички, жгутики, тонофибриллы, миофибриллы, нейрофибриллы.
Органеллы, имеющие мембранное строение
Эндоплазматическая сеть – трёхмерная замкнутая сеть канальцев, трубочек, цистерн диаметром от 20 до 1000 нм, расположенных в гиалоплазме клетки. Они связаны с цитолеммой и перинуклеарным пространством. В эндоплазматической сети происходит синтез сложных органических соединений в клетке и их транспорт в нужные участки клетки, к другим органеллам.
Различают гранулярную (шероховатую) и агранулярную (гладкую) эндоплазматическую сеть.
Наука » Медицина » Гистология
Транспорт через цитолемму
Через цитолемму происходит обмен веществ между клеткой и окружающей средой, или с другими клетками. Вещества могут проходить через неё несколькими способами: 1) путём простой диффузии и пассивного переноса (для мелких молекул, из области их высокой концентрации в зону их низкой концентрации, то есть по градиенту концентрации); этот способ характерен для воды, кислорода, углекислого газа и ряда ионов; 2) путём активного транспорта с затратой энергии, против градиента концентрации (для сахаров, аминокислот), с помощью белков-транспортёров; 3) путём облегчённого транспорта ионов – механизм, обеспечивающий избирательный перенос некоторых ионов с помощью трансмембранных белков ионных каналов.
Примером механизмов обеспечивающих активный транспорт ионов служит натриево-калиевый насос (представленный белком-переносчиком Na+-K+-АТФазой), благодаря которому ионы Na выводятся из цитоплазмы, а ионы K одновременно переносятся в неё.
Крупные молекулы или частицы могут проходить через цитолемму путём эндоцитоза (поступление веществ внутрь клетки) или экзоцитоза (выход веществ из клетки в окружающую среду). Эндоцитоз частиц или микроорганизмов происходит путём фагоцитоза, а растворённых веществ и жидкостей – путём пиноцитоза. В обоих случаях происходит инвагинация цитолеммы в области частицы, затем она окружается цитолеммой, которая далее отшнуровывается и пузырёк (фагосома) поступает внутрь клетки. В последующем она сливается с первичной лизосомой, и образуется фаголизосома, в которой происходит разрушение (переваривание) поступившего в клетку вещества.
Через цитолемму происходит обмен веществ между клеткой и окружающей средой, или с другими клетками. Вещества могут проходить через неё несколькими способами: 1) путём простой диффузии и пассивного переноса (для мелких молекул, из области их высокой концентрации в зону их низкой концентрации, то есть по градиенту концентрации); этот способ характерен для воды, кислорода, углекислого газа и ряда ионов; 2) путём активного транспорта с затратой энергии, против градиента концентрации (для сахаров, аминокислот), с помощью белков-транспортёров; 3) путём облегчённого транспорта ионов – механизм, обеспечивающий избирательный перенос некоторых ионов с помощью трансмембранных белков ионных каналов.
Примером механизмов обеспечивающих активный транспорт ионов служит натриево-калиевый насос (представленный белком-переносчиком Na+-K+-АТФазой), благодаря которому ионы Na выводятся из цитоплазмы, а ионы K одновременно переносятся в неё.
Крупные молекулы или частицы могут проходить через цитолемму путём эндоцитоза (поступление веществ внутрь клетки) или экзоцитоза (выход веществ из клетки в окружающую среду). Эндоцитоз частиц или микроорганизмов происходит путём фагоцитоза, а растворённых веществ и жидкостей – путём пиноцитоза. В обоих случаях происходит инвагинация цитолеммы в области частицы, затем она окружается цитолеммой, которая далее отшнуровывается и пузырёк (фагосома) поступает внутрь клетки. В последующем она сливается с первичной лизосомой, и образуется фаголизосома, в которой происходит разрушение (переваривание) поступившего в клетку вещества.
Наука » Медицина » Гистология
Все клетки организма человека и животных имеют общий план строения. Они состоят из цитоплазмы и ядра и отделены от окружающей среды клеточной оболочкой.
Организм человека состоит примерно из 1013 клеток, подразделяющихся более чем на 200 типов. В зависимости от своей функциональной специализации, различные клетки организма могут значительно отличаться по своей форме, величине и внутреннему устройству. В организме человека встречаются круглые (клетки крови), плоские, кубические, призматические (эпителиальные), веретеновидные (мышечные), отростчатые (нервные) клетки. Их размеры колеблются от 4-5 мкм (клетки-зёрна мозжечка и малые лимфоциты) до 250 мкм (яйцеклетка). Отростки некоторых нервных клеток имеют длину более 1 метра (у нейронов спинного мозга, отростки которых идут до кончиков пальцев конечностей). При этом форма, величина и внутреннее строение клеток всегда наилучшим образом соответствуют выполняемым ими функциям.
Организм человека состоит примерно из 1013 клеток, подразделяющихся более чем на 200 типов. В зависимости от своей функциональной специализации, различные клетки организма могут значительно отличаться по своей форме, величине и внутреннему устройству. В организме человека встречаются круглые (клетки крови), плоские, кубические, призматические (эпителиальные), веретеновидные (мышечные), отростчатые (нервные) клетки. Их размеры колеблются от 4-5 мкм (клетки-зёрна мозжечка и малые лимфоциты) до 250 мкм (яйцеклетка). Отростки некоторых нервных клеток имеют длину более 1 метра (у нейронов спинного мозга, отростки которых идут до кончиков пальцев конечностей). При этом форма, величина и внутреннее строение клеток всегда наилучшим образом соответствуют выполняемым ими функциям.
Наука » Медицина » Гистология
Клетки открыты в 1665 г. Р. Гуком. Клеточная теория, одно из величайших открытий 19-го века, была сформулирована в 1838 г. немецкими учёными М. Шлейденом и Т. Шванном, а в дальнейшем развита и дополнена Р. Вирховым. Клеточная теория включает в себя следующие положения:
1.Клетка является наименьшей единицей живого.
2.Клетки разных организмов имеют сходное строение, что свидетельствует о единстве живой природы.
3.Размножение клеток происходит путём деления исходной, материнской клетки (постулат: каждая клетка - из клетки).
4.Многоклеточные организмы состоят из сложных ансамблей клеток и их производных, объединённых в системы тканей и органов, а последние - в целостный организм с помощью нервных, гуморальных и иммунных механизмов регуляции.
Клеточная теория объединила представления о клетке как наименьшей структурной, генетической и функциональной единице животных и растительных организмов. Она вооружила биологию и медицину пониманием общих закономерностей строения живого.
1.Клетка является наименьшей единицей живого.
2.Клетки разных организмов имеют сходное строение, что свидетельствует о единстве живой природы.
3.Размножение клеток происходит путём деления исходной, материнской клетки (постулат: каждая клетка - из клетки).
4.Многоклеточные организмы состоят из сложных ансамблей клеток и их производных, объединённых в системы тканей и органов, а последние - в целостный организм с помощью нервных, гуморальных и иммунных механизмов регуляции.
Клеточная теория объединила представления о клетке как наименьшей структурной, генетической и функциональной единице животных и растительных организмов. Она вооружила биологию и медицину пониманием общих закономерностей строения живого.
Наука » Медицина » Гистология
Цитология – наука о клетке. Клетка – наименьшая живая саморегулирующаяся система, состоящая из цитоплазмы и ядра, входящая в состав тканей, лежащая в основе строения, развития и жизнедеятельности организма и подчинённая его регуляторным механизмам.
Клетка - наименьший из известных в настоящее время объектов, обладающих всеми пятью признаками жизни: определённой структурной организацией, постоянным обменом веществ и энергии с окружающей средой, раздражимостью и возбудимостью, способностью к самовоспроизведению и движению. Все эти признаки по отдельности присутствуют и в неживой природе, но только у живых объектов они присутствуют все вместе. В этом смысле вирусы нельзя относить к живым объектам, так как они не обладают собственным обменом веществ и не способны к самовоспроизведению.
Следует также отличать клетки – одноклеточные организмы (простейшие, бактерии), которые живут самостоятельно, вне многоклеточного организма и не подчинены его регуляторным механизмам. Клетки многоклеточного организма, в отличие от одноклеточных, подчинены интересам организма и регулируются нервной, эндокринной и иммунной системами. При этом они выполняют ту функцию, которая в данный момент необходима целому организму. Только раковые клетки выходят из под контроля организма и начинают безудержно размножаться, без учёта интересов целого организма.
Клетка - наименьший из известных в настоящее время объектов, обладающих всеми пятью признаками жизни: определённой структурной организацией, постоянным обменом веществ и энергии с окружающей средой, раздражимостью и возбудимостью, способностью к самовоспроизведению и движению. Все эти признаки по отдельности присутствуют и в неживой природе, но только у живых объектов они присутствуют все вместе. В этом смысле вирусы нельзя относить к живым объектам, так как они не обладают собственным обменом веществ и не способны к самовоспроизведению.
Следует также отличать клетки – одноклеточные организмы (простейшие, бактерии), которые живут самостоятельно, вне многоклеточного организма и не подчинены его регуляторным механизмам. Клетки многоклеточного организма, в отличие от одноклеточных, подчинены интересам организма и регулируются нервной, эндокринной и иммунной системами. При этом они выполняют ту функцию, которая в данный момент необходима целому организму. Только раковые клетки выходят из под контроля организма и начинают безудержно размножаться, без учёта интересов целого организма.
Транспортная организация должна назначить компетентного и квалифицированного штатного сотрудника или кого!либо из тех, кто работает на контрактной основе, ответственным за обеспечение безопасности. Основными обязанностями этого лица являются оценка риска, планирование и организация охранных мероприятий, разработка и реализация планов по обеспечению безопасности, взаимодействие с полицией, службами оказания экстренной помощи и другими государственными структурами и партнерами в условиях чрезвычайной ситуации (эвакуация и возобновление деятельности), организация обучения персонала, развертывание средств связи и проведение практических занятий. Назначенное лицо должно передавать руководству все предложения и информацию относительно безопасности, поступающую от сотрудников, иметь право самостоятельно проводить работу по повышению уровня безопасности в рамках решений, принятых руководством, а также отвечать за информирование персонала компании.
Разработка плана мероприятий по обеспечению безопасности может проходить в три этапа. На первом этапе выявляются источники угрозы для деятельности компании (т.е. анализируется текущий уровень безопасности, информация из местного полицейского участка и/или других органов государственной власти, конкретное положение компании или ее партнеров/клиентов, которые могут спровоцировать террористический акт, местоположение компании, общая обстановка в иностранных государствах, через которые проходят маршруты движения автотранспортных средств). На втором этапе определяются конкретные места, в которых компания наиболее уязвима для террористического акта. Результатом данного процесса (третий этап) является определение мер безопасности, снижающих риск до приемлемого уровня.
7.1. Торговопромышленная ассоциация по профилю компании.
7.2. Другие ассоциации, имеющие отношение к деятельности компании (например, перевозчики, компании, занятые в химической, пищевой промышленности и т.д.) и/или страховые компании.
7.3. Органы государственной власти, имеющие отношение к деятельности компании (министерство транспорта, полиция, антитеррористическая «горячая» линия и т.д.).
7.4. Службы экстренной помощи (национальные телефонные номера).
7.5. Компании, специализирующиеся на оказании услуг в сфере безопасности перевозок, с которыми транспортная компания может иметь договор на обслуживание.
7.6. Прочие.
7.2. Другие ассоциации, имеющие отношение к деятельности компании (например, перевозчики, компании, занятые в химической, пищевой промышленности и т.д.) и/или страховые компании.
7.3. Органы государственной власти, имеющие отношение к деятельности компании (министерство транспорта, полиция, антитеррористическая «горячая» линия и т.д.).
7.4. Службы экстренной помощи (национальные телефонные номера).
7.5. Компании, специализирующиеся на оказании услуг в сфере безопасности перевозок, с которыми транспортная компания может иметь договор на обслуживание.
7.6. Прочие.