Наука » Медицина » Гистология
Нервная система функционирует по рефлекторному принципу. Морфологическим субстратом её работы являются рефлекторные дуги.
Рефлекторная дуга представляет собой цепь нейронов, связанных между собой синапсами и обеспечивающую проведение нервного импульса от рецептора чувствительного нейрона до эффектора в рабочем органе.
Различают простые и сложные рефлекторные дуги. Простая рефлекторная дуга состоит из двух нейронов - чувствительного и двигательного. Сложная рефлекторная дуга включает ещё и вставочные нейроны. Рефлекторные дуги в ЦНС обычно содержат несколько вставочных нейронов.
В рефлекторной дуге возбуждение передается только в одном направлении: от рецептора по дендриту чувствительного нейрона к его перекариону, затем по его аксону через межнейрональный синапс к дендриту и телу вставочного нейрона, оттуда по аксону вставочного нейрона через синапс к дендриту эффекторного (двигательного или секреторного) нейрона, через его перикарион и аксон к эффектору в рабочем органе (мышца или железа).
Рефлекторная дуга представляет собой цепь нейронов, связанных между собой синапсами и обеспечивающую проведение нервного импульса от рецептора чувствительного нейрона до эффектора в рабочем органе.
Различают простые и сложные рефлекторные дуги. Простая рефлекторная дуга состоит из двух нейронов - чувствительного и двигательного. Сложная рефлекторная дуга включает ещё и вставочные нейроны. Рефлекторные дуги в ЦНС обычно содержат несколько вставочных нейронов.
В рефлекторной дуге возбуждение передается только в одном направлении: от рецептора по дендриту чувствительного нейрона к его перекариону, затем по его аксону через межнейрональный синапс к дендриту и телу вставочного нейрона, оттуда по аксону вставочного нейрона через синапс к дендриту эффекторного (двигательного или секреторного) нейрона, через его перикарион и аксон к эффектору в рабочем органе (мышца или железа).
Наука » Медицина » Гистология
Это окончания дендритов рецепторных (чувствительных) нейронов, расположенных только в спинномозговых ганглиях или чувствительных ядрах черепно-мозговых нервов. Рецепторы рассеяны по всему организму и воспринимают раздражения как из внешней среды (экстерорецепторы), так и внутренней среды (интерорецепторы). По виду воспринимаемого раздражения рецепторы делят на барорецепторы (воспринимают давление), хеморецепторы (химические вещества), терморецепторы (температуру) и др.
По строению рецепторы делят на свободные (состоят только из конечных ветвлений осевого цилиндра) и несвободные (окружены клетками нейроглии и соединительной ткани). Если несвободные рецепторы окружены соединительнотканной капсулой, то их называют инкапсулированные, а не имеющие такой капсулы – неинкапсулированные рецепторы.
Свободные нервные окончания характерны для эпителия. Нервное волокно, подходя к эпителиальному пласту, теряет миелиновую оболочку, а осевой цилиндр распадается на мельчайшие веточки, которые проходят между эпителиальными клетками.
По строению рецепторы делят на свободные (состоят только из конечных ветвлений осевого цилиндра) и несвободные (окружены клетками нейроглии и соединительной ткани). Если несвободные рецепторы окружены соединительнотканной капсулой, то их называют инкапсулированные, а не имеющие такой капсулы – неинкапсулированные рецепторы.
Свободные нервные окончания характерны для эпителия. Нервное волокно, подходя к эпителиальному пласту, теряет миелиновую оболочку, а осевой цилиндр распадается на мельчайшие веточки, которые проходят между эпителиальными клетками.
Наука » Медицина » Гистология
Эффекторные нервные окончания передают нервные импульсы от эффекторных нейронов рабочим органам (мышцы, железы). Соответственно, они бывают двух типов – двигательные и секреторные. Двигательные нервные окончания – концевые аппараты двигательных нейронов (мотонейронов), которые оканчиваются на мышце. Двигательные окончания в поперечно-полосатых мышцах называются нервно-мышечными окончаниями. Они состоят из концевого ветвления осевого цилиндра нервного волокна (пресинаптическая часть) и специализированного участка мышечного волокна (постсинаптическая часть). Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновую оболочку и погружается в мышечное волокно, вдавливая его сарколемму. Плазмолемма покрывающая ветвления аксона является пресинаптической мембраной, а сарколемма, покрывающая в этом участке мышечное волокно, становится постсинаптической мембраной. Между ними расположена синаптическая щель шириной около 50 нм. В терминальных ветвлениях аксона расположены многочисленные пресинаптические пузырьки, содержащие медиатор ацетилхолин. При прохождении по аксону нервного импульса ацетилхолин выделяется в синаптическую щель и действует на холинорецепторы постсинаптической мембраны. Это вызывает деполяризацию постсинаптической мембраны, которая передаётся по Т-трубочкам на всю толщину мышечного волокна и достигает цистерн саркоплазматической сети. Из них выделяются ионы кальция, под действием которых происходит взаимодействие между актиновыми и миозиновыми нитями и сокращение мышечного волокна. После этого ацетилхолин быстро разрушается ферментом ацетилхолинэстеразой, расположенной в постсинаптической мембране.
Наука » Медицина » Гистология
Это сложный каскад событий, включающий в себя следующие этапы: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора в синаптическую щель, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или обратный захват его пресинаптической мембраной.
Многие наркотики (кокаин, амфетамин) и психотропные лекарственные препараты действуют через системы захвата нейромедиаторов. При некоторых нервно-психических заболеваниях нарушается синтез белков-транспортёров.
Рецепторы к нейромедиаторам – это специальные белки расположенные в постсинатической мембране. Они бывают двух типов: связанные с ионными каналами и не связанные с ними.
Рецепторы, связанные с ионными каналами опосредуют быстрые постсинаптические эффекты, проявляющиеся в течение нескольких милисекунд. Ацетилхолин, аспартат, АТФ и глутамат открывают катионные каналы, что ведет к возникновению быстрых возбудительных постсинаптических потенциалов. ГАМК и глицин открывают каналы для ионов CI и в результате возникают быстрые тормозные постсинаптические потенциалы.
Рецепторы, не связанные с ионными каналами, опосредуют медленные, но продолжительные эффекты нейромедиаторов (лежат в основе научения и памяти). Они сопряжены с ферментами, которые в присутствии нейромедиатора катализируют образование внутриклеточного посредника (вторичного медиатора), например цАМФ (циклического аденозинмонофосфата). В свою очередь, этот посредник вызывает целый каскад молекулярных сдвигов, вызывающих изменения в постсинаптической клетке, в том числе модификацию ионных каналов в клеточной мембране.
Многие наркотики (кокаин, амфетамин) и психотропные лекарственные препараты действуют через системы захвата нейромедиаторов. При некоторых нервно-психических заболеваниях нарушается синтез белков-транспортёров.
Рецепторы к нейромедиаторам – это специальные белки расположенные в постсинатической мембране. Они бывают двух типов: связанные с ионными каналами и не связанные с ними.
Рецепторы, связанные с ионными каналами опосредуют быстрые постсинаптические эффекты, проявляющиеся в течение нескольких милисекунд. Ацетилхолин, аспартат, АТФ и глутамат открывают катионные каналы, что ведет к возникновению быстрых возбудительных постсинаптических потенциалов. ГАМК и глицин открывают каналы для ионов CI и в результате возникают быстрые тормозные постсинаптические потенциалы.
Рецепторы, не связанные с ионными каналами, опосредуют медленные, но продолжительные эффекты нейромедиаторов (лежат в основе научения и памяти). Они сопряжены с ферментами, которые в присутствии нейромедиатора катализируют образование внутриклеточного посредника (вторичного медиатора), например цАМФ (циклического аденозинмонофосфата). В свою очередь, этот посредник вызывает целый каскад молекулярных сдвигов, вызывающих изменения в постсинаптической клетке, в том числе модификацию ионных каналов в клеточной мембране.
Наука » Медицина » Гистология
Это коммуникационные соединения между нейронами. По их расположению различают аксосоматические синапсы (когда аксоны одного нейрона оканчиваются на теле другого нейрона), аксодендритические (аксоны одного нейрона оканчиваются на дендритах другого нейрона) и аксоаксональные (аксоны одного нейрона заканчиваются на аксонах другого нейрона, обычно тормозя функцию последнего).
Синапсы состоят из двух частей: пресинаптической и постсинаптической. Пресинаптическая часть синапса образована колбовидным расширением аксона с пресинаптической мембраной и содержит синаптические пузырьки со специальными биологически активными химическими веществами, медиаторами (посредниками). Постсинаптическая часть синапса включает в себя участок постсинаптической мембраны воспринимающего нейрона, в которой находятся специфические рецепторы, с которыми взаимодействуют медиаторы. Между пре- и постсинаптическими мембранами находится синаптическая щель шириной 20-30 нм.
По химической природе используемого медиатора различают синапсы:
1. Холинергические (медиатор - ацетилхолин).
2. Аминергические (медиаторы – биогенные амины: адреналин, норадреналин, дофамин, серотонин, гистамин и др.).
3. ГАМКергические (медиатор - гаммааминомасляная кислота).
Синапсы состоят из двух частей: пресинаптической и постсинаптической. Пресинаптическая часть синапса образована колбовидным расширением аксона с пресинаптической мембраной и содержит синаптические пузырьки со специальными биологически активными химическими веществами, медиаторами (посредниками). Постсинаптическая часть синапса включает в себя участок постсинаптической мембраны воспринимающего нейрона, в которой находятся специфические рецепторы, с которыми взаимодействуют медиаторы. Между пре- и постсинаптическими мембранами находится синаптическая щель шириной 20-30 нм.
По химической природе используемого медиатора различают синапсы:
1. Холинергические (медиатор - ацетилхолин).
2. Аминергические (медиаторы – биогенные амины: адреналин, норадреналин, дофамин, серотонин, гистамин и др.).
3. ГАМКергические (медиатор - гаммааминомасляная кислота).
Наука » Медицина » Гистология
Нейроны взрослых человека и животных не способны к делению, клеточной регенерации. Однако у них хорошо развита внутриклеточная регенерация: обновление макромолекул и органелл. При гибели одних нейронов, сохранившиеся нейроны гипертрофируются и берут на себя функции погибших. Возможно также восстановление повреждённых отростков нейронов и, соответственно, регенерация периферических нервов.
После перерезки нервного волокна, наступает дегенерация осевого цилиндра дистальней места повреждения. Леммоциты и макрофаги фагоцитируют продукты распада, очищают место провреждения, а затем размножаются и образуют тяжи – ленты Бюнгера. На проксимальном отрезке осевого цилиндра образуется наплыв аксоплазмы - формируется колба роста (как в эмбриогенезе). Осевой цилиндр растёт по дорожке из леммоцитов со скоростью 2-4 мм в сутки до тех пор, пока не достигает иннервируемого органа. После этого вокруг новообразованного осевого цилиндра леммоциты образуют миелиновую оболочку, а в рабочем органе вновь формируется (восстанавливается) нервное окончание.
После перерезки нервного волокна, наступает дегенерация осевого цилиндра дистальней места повреждения. Леммоциты и макрофаги фагоцитируют продукты распада, очищают место провреждения, а затем размножаются и образуют тяжи – ленты Бюнгера. На проксимальном отрезке осевого цилиндра образуется наплыв аксоплазмы - формируется колба роста (как в эмбриогенезе). Осевой цилиндр растёт по дорожке из леммоцитов со скоростью 2-4 мм в сутки до тех пор, пока не достигает иннервируемого органа. После этого вокруг новообразованного осевого цилиндра леммоциты образуют миелиновую оболочку, а в рабочем органе вновь формируется (восстанавливается) нервное окончание.
Наука » Медицина » Гистология
Иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой – симпатическими и парасимпатическими нервными волокнами, терминали которых формируют варикозные расширения на гладкомышечных клетках. Гладкие миоциты функционируют не изолированно, а клеточными комплексами. Клетки контактируют друг с другом при помощи нексусов. Последние способствуют проведению возбуждения от клетки к клетке, охватывая сразу группу миоцитов. В составе комплексов есть также миоциты-пейсмекеры, которые сами генерируют потенциал действия и передают его соседним клеткам.
Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эндомизий. Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием. В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпимизием.
Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эндомизий. Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием. В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпимизием.
Наука » Медицина » Гистология
Гладкая мышечная ткань мезенхимного происхождения располагается в стенке внутренних органов и сосудов. Структурной единицей ее является гладкий миоцит. Это клетка веретеновидной, иногда отростчатой формы (матка, эндокард, аорта), длиной 20-500 мкм, с центрально расположенным ядром. Цитолемма гладкого миоцита образует многочисленные впячивания – кавеолы (мелкие пузырьки). Снаружи цитолемму покрывает тонкая базальная мембрана. В базальной мембране каждого миоцита есть отверстия, где клетки контактируют друг с другом при помощи нексусов, осуществляющих метаболические связи.
Органеллы общего значения – комплекс Гольджи, митохондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохондрии. Саркоплазматическая сеть участвует в синтезе гликозаминогликанов и белковых молекул, из которых осуществляется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примыкают к кавеолам и вместе с ними служат для депонирования ионов кальция.
Органеллы общего значения – комплекс Гольджи, митохондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохондрии. Саркоплазматическая сеть участвует в синтезе гликозаминогликанов и белковых молекул, из которых осуществляется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примыкают к кавеолам и вместе с ними служат для депонирования ионов кальция.
Наука » Медицина » Гистология
Мышечные ткани – это специализированные ткани, основной функцией которых является сокращение. Благодаря им обеспечиваются все двигательные процессы в организме (гемоциркуляция в сосудах, ритмическая деятельность миокарда, перистальтика пищеварительного тракта и другие, а также перемещение организма в пространстве). Сокращение структурных элементов мышечных тканей осуществляется с помощью специальных органелл – миофибрилл – и является результатом взаимодействия молекул сократительных белков.
Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характеризуется тем, что содержит миофибриллы, не имеющие поперечной исчерченности; 2) поперечнополосатая (исчерченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделяется на скелетную и сердечную. Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, находятся во внутренних органах и сосудах); 2) эпидермальные (развиваются из кожной эктодермы, включают немышечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейральные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) соматические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань);
Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характеризуется тем, что содержит миофибриллы, не имеющие поперечной исчерченности; 2) поперечнополосатая (исчерченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделяется на скелетную и сердечную. Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, находятся во внутренних органах и сосудах); 2) эпидермальные (развиваются из кожной эктодермы, включают немышечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейральные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) соматические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань);
Наука » Медицина » Гистология
Она состоит из эпифизов и диафиза. С наружи диафиз покрыт надкостницей, или периостом (рис. 6-3). В надкостнице различают два слоя: наружный (волокнистый) – образован в основном волокнистой соединительной тканью и внутренний (клеточный) – содержит клетки остеобласты. Через надкостницу проходят питающие кость сосуды и нервы, а также под разными углами проникают коллагеновые волокна, которые получили название прободающих волокон. Чаще всего эти волокна разветвляются только в наружном слое общих пластинок. Надкостница связывает кость с окружающими тканями и принимает участие в ее трофике, развитии, росте и регенерации.
Компактное вещество, образующее диафиз кости, состоит из костных пластинок, располагающихся в определенном порядке, образуя три слоя:
- наружный слой общих пластинок. В нем пластинки не образуют полных колец вокруг диафиза кости. В этом слое залегают прободающие каналы, по которым из надкостницы внутрь кости входят сосуды.
-средний, остеонный слой - образован концентрически наслоенными вокруг сосудов костными пластинками. Такие структуры называются остеонами, а пластинки, их образующие - остеонные пластинки. Остеоны являются структурной единицей компактного вещества трубчатой кости. Каждый остеон отграничен от соседних остеонов так называемой спайной линией. В центральном канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью. Все остеоны в основном расположены параллельно длинной оси кости. Каналы остеонов анастомозируют друг с другом. Сосуды, расположенные в каналах остеонов, сообщаются друг с другом, с сосудами костного мозга и надкостницы. Кроме пластинок остеонов в этом слое располагаются также вставочные пластинки (остатки старых разрушенных остеонов), которые лежат между остеонами.
Компактное вещество, образующее диафиз кости, состоит из костных пластинок, располагающихся в определенном порядке, образуя три слоя:
- наружный слой общих пластинок. В нем пластинки не образуют полных колец вокруг диафиза кости. В этом слое залегают прободающие каналы, по которым из надкостницы внутрь кости входят сосуды.
-средний, остеонный слой - образован концентрически наслоенными вокруг сосудов костными пластинками. Такие структуры называются остеонами, а пластинки, их образующие - остеонные пластинки. Остеоны являются структурной единицей компактного вещества трубчатой кости. Каждый остеон отграничен от соседних остеонов так называемой спайной линией. В центральном канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью. Все остеоны в основном расположены параллельно длинной оси кости. Каналы остеонов анастомозируют друг с другом. Сосуды, расположенные в каналах остеонов, сообщаются друг с другом, с сосудами костного мозга и надкостницы. Кроме пластинок остеонов в этом слое располагаются также вставочные пластинки (остатки старых разрушенных остеонов), которые лежат между остеонами.
Наука » Медицина » Гистология
Соединительные ткани характеризуются разнообразием клеток и хорошо развитым межклеточным веществом, состоящим из волокон и основного аморфного вещества.
Эту группу составляют:
I. Собственно соединительные ткани.
II. Скелетные соединительные ткани (хрящевая и костная).
Все разновидности соединительных тканей выполняют следующие функции:
1) механическую;
2) опорную;
3) формообразующую (входят в состав капсулы и стромы многих органов);
4) защитную, осуществляемую путем механической защиты (фасции, хрящи, кости), фагоцитоза и выработки иммунных тел;
5) пластическую, выражающуюся участием в процессах адаптации к изменяющимся условиям существования, регенерации, заживлении ран;
6) трофическую, связанную с участием в обмене веществ и поддержании гомеостаза внутренней среды организма.
Эту группу составляют:
I. Собственно соединительные ткани.
II. Скелетные соединительные ткани (хрящевая и костная).
Все разновидности соединительных тканей выполняют следующие функции:
1) механическую;
2) опорную;
3) формообразующую (входят в состав капсулы и стромы многих органов);
4) защитную, осуществляемую путем механической защиты (фасции, хрящи, кости), фагоцитоза и выработки иммунных тел;
5) пластическую, выражающуюся участием в процессах адаптации к изменяющимся условиям существования, регенерации, заживлении ран;
6) трофическую, связанную с участием в обмене веществ и поддержании гомеостаза внутренней среды организма.
Наука » Медицина » Гистология
Кровяные пластинки, или тромбоциты – безъядерные бесцветные тельца размером 2-3 мкм., образующиеся в количестве 200-300×109 /л в результате отщепления фрагментов цитоплазмы гигантских клеток красного косного мозга – мегакариоцитов. Каждая пластинка состоит из двух частей: хромомера, или грануломера, и гиаломера. Гиаломер – прозрачная часть, находится на периферии тромбоцита. Хромомер - интенсивно окрашенная часть, находится в центре и содержит гранулы, остатки органелл, а также включения гликогена. Гранулы содержат ряд факторов свертывания крови, факторы роста, литические ферменты, биологически активные вещества – серотонин, гистамин и другие. Содержимое гранул выделяется по открытой системе канальцев, связанных с плазмолеммой. В тромбоцитах есть также цитоскелет, представленный микротрубочками. На поверхности находится хорошо развитый гликокаликс. В популяции тромбоцитов различают молодые, дифференцированные и стареющие формы. Продолжительность их жизни 9-10 дней. Кроме основной своей функции – участия в свертывании крови и образовании тромбов, они накапливают серотонин и другие биологически активные вещества.