Жидкости занимают промежуточное положение между газами и твёрдыми веществами. Силы взаимного притяжения молекул в жидкостях достаточно велики, чтобы удерживать молекулы вместе, так что, в отличие от газов, жидкости имеют постоянный объём. В то же время эти силы недостаточны, чтобы держать молекулы в жёсткой упорядоченной структуре, и потому у жидкостей нет постоянной формы.
Если в газах доля свободного объёма составляет более 99%, то в жидкостях — обычно лишь около 3%. То есть плотности жидкостей значительно выше и приближаются к плотностям твёрдых тел. Поскольку молекулы жидкого вещества уже находятся в довольно тесном контакте, сжимаемость жидкостей на много порядков ниже, чем газов.
Во внутреннем объёме жидкости молекулы имеют максимально возможное число «соседей», а на поверхности образуют меньше связей и потому обладают избытком энергии. Этим обусловлено одно из важнейших свойств жидкости — поверхностное натяжение: жидкость всегда стремится уменьшить свою поверхность. Вот почему свободно падающая жидкость принимает форму капли, а в невесомости — форму шара, поверхность которого при данном объёме минимальна.
Подобно молекулам газа, молекулы жидкости находятся в постоянном, хотя и сильно ограниченном, движении. Некоторые из них обладают достаточной энергией, чтобы преодолеть силы межмолекулярного притяжения и, оторвавшись от поверхности жидкости, перейти в газовую фазу. Этот процесс — испарение — происходит непрерывно. Одновременно идёт и обратный процесс — конденсация, когда молекулы из газовой фазы возвращаются в жидкую. При неизменной температуре в замкнутом объёме между процессами испарения и конденсации устанавливается динамическое равновесие, и давление пара принимает постоянное значение; это давление насыщенного пара жидкости при данной температуре.
Если температура повышается, всё больше молекул в жидкости приобретают необходимую для испарения энергию, поэтому давление насыщенного пара увеличивается. Наконец, когда давление пара сравнивается с внешним давлением, начинается интенсивное испарение не только на поверхности жидкости, но и в её объёме — кипение. При постоянном давлении температура кипения жидкости также постоянна.
Зависимость температуры кипения жидкостей от внешнего давления учитывал немецкий физик Габриель
Даниель Фаренгейт (1686—1736), занимаясь калибровкой изготовленных им первых точных термометров. Например, при понижении атмосферного давления с 760 до 735 мм рт. ст. температура кипения воды уменьшается со 100 до 99 °С. В высокогорной местности, где атмосферное давление мало, вода кипит при ещё более низкой температуре, поэтому варить пищу приходится дольше. И наоборот, еду можно приготовить быстрее в специальной кастрюле-скороварке, где создаётся давление 1,9 атм, так что вода кипит при 118 °С!
Похожие статьи