Млекопитающие

Наука » Биология » Эволюция
Передний мозг - это наиболее крупный отдел головного мозга. У разных видов его абсолютный и относительный размеры весьма варьируют. Главная особенность переднего мозга - значительное раз­витие коры полушарий, которая собирает всю сенсорную информа­цию от органов чувств, производит высший анализ и синтез этой ин­формации и становится аппаратом тонкой условно-рефлекторной деятельности, а у высокоорганизованных млекопитающих - и психи­ческой деятельности (маммальныйтип мозга).

У наиболее высокоорганизованных млекопитающих кора имеет борозды и извилины, что значительно увеличивает ее поверхность.

Для переднего мозга млекопитающих и человека характерна функ­циональная асимметрия. У человека, она выражается в том, что пра­вое полушарие отвечает за образное мышление, и левое - за абстракт­ное. Кроме того, в левом полушарии находятся центры устной и письменной речи.

Птицы

Наука » Биология » Эволюция
Нервная система в связи с общим усложнением организации, при­способленностью к полету и обитанием в самых различных средах, развита значительно лучше, чем у пресмыкающихся.

Дня птиц характерно дальнейшее увеличение общего объема головного мозга, особенно переднего.

Передний мозг у птиц - это высший интегративный центр. Его ведущим отделом являются полосатые тела (зауропсидный тип мозга).

Крыша остается слабо развитой. В ней сохраняются только медиаль­ные островки коры, которые выполняют функцию высшего обоня­тельного центра. Они оттесняются к перемычке между полушариями и носят название гиппокампа. Обонятельные доли развиты слабо.

Промежуточный мозг небольших размеров и связан с гипофизом и эпифизом.

Средний мозг имеет хорошо развитые зрительные доли, что обусловлено ведущей ролью зрения в жизни птиц.

Мозжечок крупный, имеет среднюю часть с поперечными бороздами и небольшие боковые выросты.

Продолговатый мот такой же, как у рептилий. 12 пар черепно-мозговых нервов.

Пресмыкающиеся (рептилии)

Наука » Биология » Эволюция
Рептилии относятся к высшим позвоночным и характеризуются более активным образом жизни, что сочетается с прогрессивным раз­витием всех отделов головного мозга.

Передний мозг является самым крупным отделом головного мозга. Кпереди от него отходят развитые обонятельные доли. Крыша остает­ся тонкой, но на медиальной и латеральной стороне каждого полушария появляются островки коры. Кора имеет примитивное строение и называется древней – археокортекс. Роль высшего интегративного центра выполняют полосатые тела переднего мозга - зауропсидный тип мозга. Полосатые тела обеспечивают анализ поступающей ин­формации и выработку ответных реакций.

Промежуточный, мозг, будучи связан с эпифизом и гипофизом имеет еще и дорсальный придаток - теменной орган, воспринимаю­щий световые раздражения.

Средний мозг теряет значение высшего интегративного центра, снижается и его значение как зрительного центра, в связи, с чем его размеры уменьшаются.

Мозжечок развит значительно лучше, чем у амфибий.

Продолговатый мозг образует резкий изгиб, характерный для высших позвоночных, в том числе и для человека.

От головного мозга отходит 12 пар черепно-мозговых нервов, что типично для всех высших позвоночных, в том числе и для человека.

Амфибии

Наука » Биология » Эволюция
У амфибий имеется ряд прогрессивных изменений в головном мозге, что связано с переходом к наземному образу жизни, где усло­вия по сравнению с водной средой более разнообразны и характери­зуются непостоянством действующих факторов. Это привело к про­грессивному развитию органов чувств и соответственно - прогрессив­ному развитию головного мозга.

Передний мозг у амфибии в сравнении с рыбами значительно крупнее, в нем появилось два полушария и два желудочка. В крыше переднего мозга появились нервные волокна, образующие первичный мозговой свод - архипаллиум. Тела нейронов располагаются в глуби­не, окружая желудочки, в основном в полосатых телах. Все еще хорошо развиты обонятельные доли.

Высшим интегративным центром остается средний мозг (ихтиопсидный тип). Строение такое же, как у рыб.

Мозжечок связи с примитивностью движений амфибий имеет вид небольшой пластинки.

Промежуточный и продолговатый мозг такие же, как у рыб. От головного мозга отходят 10 пар черепно-мозговых нервов.

Рыбы

Наука » Биология » Эволюция
Передний мозг небольшой, не разделен на полушарии, имеет только один желудочек. Его крыша не содержит нервных элементов, а образована эпителием. Нейроны сосредоточены на дне желудочка в полосатых телах и в отходящих спереди от переднего мозга обонятельных долях. По существу, передний мозг выполняет функцию обоня­тельного центра.

Средний мозг является высшим регуляторным и интегративным центром. Он состоит из двух зрительных долей и является наиболее крупным отделом мозга. Такой тип мозга, где высшим регуляторным центром является средний мозг, называется ихтиопсидпым.

Промежуточный мозг состоит из крыши (таламуса) и дна (гипоталамуса) С гипоталамусом связан гипофиз, а с таламусом - эпифиз.

Мозжечок у рыб хорошо развит, поскольку их движения отлича­ются большим разнообразием.

Продолговатый мозг без резкой границы переходит в спинной мозг и в нем сосредоточен пищевой, сосудодвигательный и дыхатель­ный центры.

От мозга отходит 10 пар черепно-мозговых нервов, что характерно для низших позвоночных.

ЭВОЛЮЦИЯ ГОЛОВНОГО МОЗГА У ПОЗВОНОЧНЫХ

Наука » Биология » Эволюция
ЭВОЛЮЦИЯ ГОЛОВНОГО МОЗГА У ПОЗВОНОЧНЫХ


Формирование головного мозга у зародышей всех позвоночных начинается с появления на переднем конце нервной трубки вздутий - мозговых пузырей. Вначале их образуется три, а затем пять. Из пе­реднего мозгового пузыря в дальнейшем образуется передний и про­межуточный мозг, из среднего - средний мозг, а из заднего - мозжечок и продолговатый мозг. Последний без резкой границы переходит в спинной мозг

В нервной трубке есть полость - невроцель, которая в ходе образо­вания пяти мозговых пузырей формирует расширения - мозговые же­лудочки (у человека их 4).В этих участках мозга различают дно (основание) и крышу (мантия). Крыша располагается над -, а дно под желудочками.

Филогенез нервной системы

Наука » Биология » Эволюция
Все живые организмы на протяжении жизни испытывают многообразные воздействия со стороны внешней среды, на которые отвечают изменением поведения или физиологических функций. Эта способность реагировать на средовые воздействия называется раздражимостью.

Раздражимость имеет место уже у простейших и выражается в изменении у них процессов жизнедеятельности или поведения в ответ на такие раздражения, как химические, температурные, световые.

Филогенез нервной системы


У многоклеточных животных появляется специальная система клеток - нейроны, способные в ответ на определенные раздражения отвечать нервным импульсом, который они передают другим клеткам тела. Совокупность нервных клеток формирует нервную систему, сложность структуры и функции которой возрастает с усложнением организации животных. В зависимости от последнего у многоклеточных животных в эволюции сложилось три основных типа нервной системы: сетевидная (диффузная), ганглиозная (узловая) и трубчатая.

ЗНАЧЕНИЕ ХРОНОБИОЛОГИИ ДЛЯ МЕДИЦИНЫ

Наука » Биология » Биологические ритмы
Медицина и биология в настоящее время вплотную подошли к концепции хронопсии (от греч «chronos» – время, «opsis» - рассмотрение), т.е. к рассмотрению процессов нормы и патологии в проекции на определённые отрезки времени (в течение суток, месяцев, сезонов и т.д.).
Рассогласование биоритмов (десинхроноз) является, как показывают исследования, первым сигналом о биологическом неблагополучии, которое может рассматриваться как предпатология или патология. Это позволяет обеспечить раннюю диагностику заболеваний, более эффективное лечение и профилактику.
Важным показателем нормы и патологии функций организма является такой параметр как хронодесм (доверительный интервал) - диапазон суточных колебаний функции в норме. Это значит, что в разное время суток показатель нормы колеблется в разных пределах, и, следовательно, один и тот же показатель функции в одно время суток в норме будет иметь одну количественную характеристику, а в другое время – другую.

МЕХАНИЗМЫ ЦИРКАДИАННОЙ ВРЕМЕННОЙ СИСТЕМЫ

Наука » Биология » Биологические ритмы
Существует три модели функционирования циркадианной временной организации:
1-я модель: Моноосцилляторная иерархическая. Суть её: один центральный циркадный осциллятор (пейсмекер) регулирует на ритмы внешней среды и задает по нервно-гуморальным путям регуляции ритмы другим органам и системам органов.
Центральный циркадианный осциллятор у млекопитающих – это супрахиазменные ядра гипоталамуса. У птиц такой осциллятор – эпифиз (шишковидное тело, рудимент третьего глаза).
2-ая модель: Мультиосцилляторная иерархическая (много осцилляторов).
Согласно этой модели, наряду с центральным осциллятором (в головном мозге), имеются периферические автономные осцилляторы в нервных центрах, ганглиях, железах внутренней секреции, а также в органах и клетках, управляемых сверху-вниз без обратимой связи с внешней средой.
3-я модель: Мультиосцилляторная неиерархическая. Существует несколько групп автономных осцилляторов, связанных между собой. В каждой группе имеется свой центральный водитель ритмов (пейсмекер), связанный с ритмами внешней среды и синхронизирующий колебания внутри своей подсистемы по принципу прямых и обратных связей.
Большинство ученых считает, что, несмотря на наличие автономных осцилляторов (органных), видимо, существует центральный осциллятор, которым у млекопитающих и человека являются супрахиазменные ядра гипоталамуса и эпифиз. Функция последнего во многом определяется супрахиазменными ядрами, так как через эти ядра эпифиз получает главную информацию о состоянии внешней среды.

ПРОИСХОЖДЕНИЕ БИОРИТМОВ

Наука » Биология » Биологические ритмы
Биологические ритмы начали формироваться одновременно с зарождением жизни на Земле. Поначалу ритмичность выражалась в автоколебаниях химических реакций. В дальнейшем по мере организации примитивных животных систем ритмы биохимических реакций синхронизировались между собой и с окружающей средой. Возникла определенная упорядоченность реакций во времени и пространстве. В процессе естественного отбора получали преимущество и дальнейшего развития только те примитивные живые системы, внутренние биохимические циклы которых имели устойчивый характер и совпадали с ритмами внешней среды (геофизическими датчиками времени: свет, температура, магнитное поле, электромагнитные излучения). Среди всей суммы внешней среды наибольшее значение для адаптации примитивных живых систем к жизни на Земле имели суточные ритмы, связанные с вращением Земли вокруг своей оси. В процессе эволюции сохранились и получили развитие только те живые системы, в которых внутренние ритмы биохимических реакций синхронизировались с ритмами внешней среды и, в первую очередь, с суточными ритмами.
Таким образом, если рассматривать природу ритма, то ритм имеет эндогенное происхождение, однако формирование этих ритмов шло под воздействием среды. В настоящее время установлено, что организм и любого другого живого существа – это система жизнедеятельности, подчиняющаяся ритму.
Наиболее важное практическое значение имеют суточные ритмы, которые интегрированы (объединены) в единую, сложную систему, называемую циркадианной временной системой. Эта система обеспечивает временное согласование функций внутри организма и временную адаптацию организма к внешней среде.

ПАРАМЕТРЫ БИОРИТМОВ

Наука » Биология » Биологические ритмы
Среди многих параметров, свойственных биологическим ритмам, прежде всего, следует выделить период. Он представляет собой тот промежуток времени, через который в организме происходит воспроизведение (повторение) событий. Иными словами, ритм – это длительность одного колебательного цикла.
Биологический ритм характеризует его амплитуда, отражающая размах колебаний биологического процесса между его кратными значениями.
Очень важной характеристикой служит также и мезор – средний уровень колебательного процесса. Амплитуда по существу – это максимальное отклонение от мезора.
В биоритмах выделяют также то положение функций во времени, когда она достигает кратных значений. Время, когда функция имеет максимальное значение, называется акрофазой, а когда минимальное – батифазой. Они выражаются в часах или градусах.

ПАРАМЕТРЫ БИОРИТМОВ

КЛАССИФИКАЦИЯ БИОРИТМОВ

Наука » Биология » Биологические ритмы
Биоритмы классифицируются, прежде всего, на основании длины периода, под которым понимается длительность одного полного цикла ритмического колебания. С учётом длины периода выделяют: высокочастотные, среднечастотные и низкочастотные ритмы.
Высокочастотные ритмы это те, у которых период менее 30 минут. Такой период имеют у человека дыхание, биологическая активность головного мозга и сердца, перестальтика желудка и кишечника и др.
Среднечастотные ритмы - от 30 минут до 5 суток. Они делятся на: ультрадианные, циркадианные, инфрадианные. Ультрадианные имеют период колебаний от 30 минут до 20 часов. Циркадианные (околосуточные) – это те, у которых период составляет от 20 до 28 часов. Инфрадианные – с периодом от 28 часов до 5 суток.