Гипофиз (или нижний мозговой придаток) имеется у всех позвоночных. Однако, несмотря на существенные отличия у представителей отдельных классов и отрядов, он, в общем, представлен тремя долями: передней, промежуточной и задней. Передняя и промежуточная доли объединяются под названием аденогипофиза, а задняя называется – нейрогипофизом. Анатомически и функционально гипофиз связан с промежуточным мозгом (рис 35).
Гипофиз образуется из двух зачатков. Аденогипофиз – производное дорсального выпячивания крыши ротовой полости, получившего название кармана Ратке. Нейрогипофиз возникает за счет выпячивания из третьего мозгового желудочка, образующего воронку. Соединившись с тканью воронки, карман Ратке утрачивает связь с ротовой полостью. Его стенка соприкасающаяся с задней (невральной) долей, преобразуется в промежуточную долю, а из противоположенной передней стенки формируется передняя (дистальная) доля. От последней обособляются два латеральных выроста, которые обрастают воронку и, сливаясь в тонкую эпителиальную пластинку, образуют туберальную долю
Рис. 35. Анатомия гипофиза.
Гипофиз образуется из двух зачатков. Аденогипофиз – производное дорсального выпячивания крыши ротовой полости, получившего название кармана Ратке. Нейрогипофиз возникает за счет выпячивания из третьего мозгового желудочка, образующего воронку. Соединившись с тканью воронки, карман Ратке утрачивает связь с ротовой полостью. Его стенка соприкасающаяся с задней (невральной) долей, преобразуется в промежуточную долю, а из противоположенной передней стенки формируется передняя (дистальная) доля. От последней обособляются два латеральных выроста, которые обрастают воронку и, сливаясь в тонкую эпителиальную пластинку, образуют туберальную долю
Надпочечники – это железы внутренней секреции, характерные для позвоночных. Они состоят из разных по происхождению частей – коркового и мозгового вещества. Причем эти две части у низших позвоночных образуют два отдельных органа: корковое вещество так называемый интерреналовый орган, и мозговое вещество – супрареналовый орган.
Корковое вещество и интерреналовые органы имеют мезодермальное происхождение и развиваются из эпителия, выстилающего полость тела.
У круглоротых интерреналовые (межпочечные) тела имеют вид множественных метамерно расположенных утолщений по обеим сторонам туловища от головы до хвоста. У рыб интерреналовый орган представлен парными эпителиальными тяжами, расположенными расположенными между внутренними краями первичных почек по бокам спинной брыжейки.
Корковое вещество и интерреналовые органы имеют мезодермальное происхождение и развиваются из эпителия, выстилающего полость тела.
У круглоротых интерреналовые (межпочечные) тела имеют вид множественных метамерно расположенных утолщений по обеим сторонам туловища от головы до хвоста. У рыб интерреналовый орган представлен парными эпителиальными тяжами, расположенными расположенными между внутренними краями первичных почек по бокам спинной брыжейки.
Паращитовидные (околощитовидные) железы имеются у всех позвоночных, кроме круглоротых. У рыб гомологом этих желез служит ультимобранхиальная железа, расположенная между вентральной стенкой пищевода и венозным синусом. Она представляет собой эпителиальное утолщение, развивающееся из стенки глотки позади последней пары жаберных щелей. У остальных позвоночных паращитовидные железы возникают в ходе эмбриогенеза из утолщений эпителия третьей и четвертой пары жаберных карманов. Вскоре после этого происходит отделение закладки паращитовидных желез от места своего возникновения и миграция их в область шеи. Здесь они оказываются более или менее тесно связанными в своем расположении со щитовидной железой, а в ряде случаев – погружаются в последнюю. Чаще всего закладывается четыре паращитовидных железы. У амфибий их бывает2 – 3, у птиц и некоторых млекопитающих (крыс, мышей, свиней) развивается только одна пара желез. В 20% случаев наблюдается ассиметрия и атипичное расположение этих желез. Они могут располагаться в паренхиме щитовидной железы, но и в глубокой клетчатке шеи, в средостении и в вилочковой железе. Около них могут встречаться иногда добавочные участки паренхимы паращитовидных желез.
Щитовидная железа имеется у всех позвоночных, а у низших хордовых, таких, как оболочники и ланцетник, присутствует только ее гомолог в виде продольного железистого желобка - эндостиля, по которому в просвет глотки вытекает слизь, содержащая йод. Слизь обволакивает пищевые частицы и проникает в желудок, где содержащийся в слизи йод усваивается организмом.
У личинки миноги пескоройки имеется зачаток щитовидной железы (подглоточная железа). Он состоит из четырех рядов секретирующих клеток и сообщается узкой щелью с полостью глотки на уровне третьей пары жаберных карманов. По мере превращения личинки миноги во взрослое животное подглоточная железа утрачивает связь с глоткой и распадается на множество пузыревидных образований – фолликулов, характерных для структурной организации щитовидной железы всех позвоночных.
У личинки миноги пескоройки имеется зачаток щитовидной железы (подглоточная железа). Он состоит из четырех рядов секретирующих клеток и сообщается узкой щелью с полостью глотки на уровне третьей пары жаберных карманов. По мере превращения личинки миноги во взрослое животное подглоточная железа утрачивает связь с глоткой и распадается на множество пузыревидных образований – фолликулов, характерных для структурной организации щитовидной железы всех позвоночных.
Эндокринные железы у позвоночных животных играют гораздо более значимую роль в регуляции физиологических систем организма, чем у беспозвоночных. У разных классов позвоночных железы внутренней секреции имеют, за небольшим исключением, в общих чертах единый план строения и сходные функции. У них кроме основных желез внутренней секреции, таких как: гипофиз, эпифиз, надпочечники, щитовидная и паращитовидная железы, имеются смешанные железы, которые, помимо эндокринной, выполняют и другие функции. Это поджелудочная железа и половые железы (гонады). Кроме того, у человека гормональные вещества вырабатываются в ряде других органов, имеющих иные физиологические функции. Гормонообразующие клетки этих органов составляют так называемую диффузную эндокринную систему. Она представлена эндокринными клетками желудочно-кишечного тракта, сердца, легких, почек, печени и кожи. Основная масса таких эндокринных клеток (75 %) сосредоточена в эпителии пищеварительной системы.
Сейчас известно, что наряду с железами внутренней секреции, ряд сходных гормонов вырабатывают и клетки головного мозга. Например, такие гормоны, как энкефалины и эндорфины, образуются в центральной нервной системе и в островковых клетках поджелудочной железы. Энкефалины являются пентапептидами, которые, связываясь со специфическими участками опиатных рецепторов, оказывают обезболивающее действие. Эндорфины – полипептиды с морфиноподобным действием, тоже обладают способностью связываться с опиатными рецепторами. Являясь эндогенными медиаторами, энкефалины и эндорфины не вызывают привыкания.
Сейчас известно, что наряду с железами внутренней секреции, ряд сходных гормонов вырабатывают и клетки головного мозга. Например, такие гормоны, как энкефалины и эндорфины, образуются в центральной нервной системе и в островковых клетках поджелудочной железы. Энкефалины являются пентапептидами, которые, связываясь со специфическими участками опиатных рецепторов, оказывают обезболивающее действие. Эндорфины – полипептиды с морфиноподобным действием, тоже обладают способностью связываться с опиатными рецепторами. Являясь эндогенными медиаторами, энкефалины и эндорфины не вызывают привыкания.
Для координирования деятельности всех органов и систем многоклеточного организма и обеспечения его приспособления к изменяющимся условиям окружающей среды в ходе эволюции животных и человека сформировался аппарат центрального управления – нервная система, а позже и эндокринная. Первая обеспечивает быстрый и относительно кратковременный способ регуляции, вторая – преимущественно более медленный и длительный. Нервная система осуществляет регуляцию посредствам нервных клеток, передающих с помощью своих отростков нервные импульсы, а эндокринная – через циркулирующие жидкости (гуморально), переносящие биологически активные эндокринные продукты – гормоны. Гормонам принадлежит важная роль в регуляции медленно развивающихся формообразовательных процессов, таких как рост, дифференцировка, обмен веществ, размножение. Преимущественно гормональную природу имеет и регуляция концентрации тех или иных химических компонентов в жидких средах организма.
Воздействия постоянным и переменным магнитным полем вызывает реакции у широкого круга живых существ. Однако остается неясным вопрос о том: вызываются ли эти реакции непосредственным влиянием магнитного поля на состояние клеток и тканей или же является результатом специфической рецепции.
Для многих одноклеточных животных магнитное поле может служить ориентиром для направления движения. Так, например, парамеции предпочитают южное направление и плывут к южному полюсу быстрее, чем в других направлениях. Описана способность ориентации по магнитному полю Земли для планарий и многих насекомых. Существуют объективные доказательства на ориентацию в геомагнитном поле рыб и влиянии на их поведение искусственных геомагнитных полей. Есть много сообщений как подтверждающих, так и опровергающих возможность ориентировки птиц при перелетах на геомагнитные поля.
Один из возможных механизмов действия магнитных полей состоит в их влиянии на состояние возбудимости клеточных мембран и ионного баланса нервных клеток.
Ввиду насыщения окружающей среды техническими источниками электромагнитных полей встает проблема воздействия этого фактора на здоровье и самочувствие человека, тем более, что эксперименты указывают на возможность неблагоприятного воздействия магнитных полей на нервную систему вплоть до появления галлюцинаций под действием мощных магнитных полей.
Для многих одноклеточных животных магнитное поле может служить ориентиром для направления движения. Так, например, парамеции предпочитают южное направление и плывут к южному полюсу быстрее, чем в других направлениях. Описана способность ориентации по магнитному полю Земли для планарий и многих насекомых. Существуют объективные доказательства на ориентацию в геомагнитном поле рыб и влиянии на их поведение искусственных геомагнитных полей. Есть много сообщений как подтверждающих, так и опровергающих возможность ориентировки птиц при перелетах на геомагнитные поля.
Один из возможных механизмов действия магнитных полей состоит в их влиянии на состояние возбудимости клеточных мембран и ионного баланса нервных клеток.
Ввиду насыщения окружающей среды техническими источниками электромагнитных полей встает проблема воздействия этого фактора на здоровье и самочувствие человека, тем более, что эксперименты указывают на возможность неблагоприятного воздействия магнитных полей на нервную систему вплоть до появления галлюцинаций под действием мощных магнитных полей.
Большая часть животных имеет температуру, отличающуюся от окружающей среды. Это, с одной стороны, связано с накоплением тепла за световой день, а с другой – в результате экзотермических химических реакций, протекающих в организме. Инфракрасные (тепловые) излучения способны воспринимать как гомойотермные, так и пойкилотермные животные. Наиболее полно изучены терморецепторы у позвоночных. В основе терморецепции лежит способность свободных нервных окончаний воспринимать изменения температуры.
Свободные нервные окончания организованы в специализированные органы – ямки или небольшие складки. Такие примитивные терморецепторы известны у обыкновенного удава. У питонов имеются небольшие ямки, дно которых хорошо иннервировано. У ямкоголовых змей на дне термочувствительной ямки находится мембрана, которая отделена от остальных тканей термоизолирующей прослойкой воздуха. В мембране присутствует большое количество свободных нервных окончаний.
Свободные нервные окончания организованы в специализированные органы – ямки или небольшие складки. Такие примитивные терморецепторы известны у обыкновенного удава. У питонов имеются небольшие ямки, дно которых хорошо иннервировано. У ямкоголовых змей на дне термочувствительной ямки находится мембрана, которая отделена от остальных тканей термоизолирующей прослойкой воздуха. В мембране присутствует большое количество свободных нервных окончаний.
У первичноводных позвоночных часть специализированных механорецепторов боковой линии трансформировалась в электрорецепторы. Помимо первичноводных позвоночных электрорецепция обнаружена у утконоса, и есть предположения о наличии такого рода рецепторов у птиц. Известно около 70 видов рыб с развитыми электрорецепторами, кроме того, около 500 видов могут генерировать электрические разряды. А, примерно, 20 видов обладают способностями и генерировать и рецептировать электрические поля.
По способности генерировать и рецептировать электрические сигналы животных делят на три группы. К первой группе относят рыб, генерирующих сильные заряды (электрические угри, электрические скаты и африканские электрические сомы). Ко второй группе относят животных, которые способны как генерировать, так и рецептировать электрические сигналы (гимнархи и клювокрылые). К третьей группе относят животных, способных только чувствовать электрические разряды, но не способных их генерировать. К этой группе относят кошачьих и молотоголовых акул. Чувствительность их электрорецепторов очень высокая, и это позволяет им определять место укрытия рыб в песке по локальному искажению электромагнитного поля Земли.
По способности генерировать и рецептировать электрические сигналы животных делят на три группы. К первой группе относят рыб, генерирующих сильные заряды (электрические угри, электрические скаты и африканские электрические сомы). Ко второй группе относят животных, которые способны как генерировать, так и рецептировать электрические сигналы (гимнархи и клювокрылые). К третьей группе относят животных, способных только чувствовать электрические разряды, но не способных их генерировать. К этой группе относят кошачьих и молотоголовых акул. Чувствительность их электрорецепторов очень высокая, и это позволяет им определять место укрытия рыб в песке по локальному искажению электромагнитного поля Земли.
Глаз развивается из многих зачатков, поэтому встречаются различные эмбриональные нарушения развития глаза.
Частым дефектом является формирование неправильной кривизны роговицы и хрусталика – астигматизм, в результате чего изображение проецируется в виде не точки, а линии. Из-за неправильного формирования глазного яблока может быть врожденная близорукость (длинный глаз) или дальнозоркость (короткий глаз), не корригирующиеся преломляющими средами глазного яблока и требующие ношения соответствующих очков.
При врожденном помутнении хрусталика возникает препятствие прохождению светового пучка. В результате недоразвития венозной пазухи, склеры и пространства радужно-роговичного угла развивается глаукома, обусловленная повышением внутриглазного давления, что приводит к атрофии светочувствительных и нервных элементов сетчатки.
Пороком развития вспомогательных органов глаза является отсутствие век, а при скрытом глазе глазная щель будет весьма узкой. Встречается нависающая горизонтальная складка верхнего века. Очень редко наблюдается порок развития, когда в сосудистой оболочке отсутствует пигмент (альбиносы).
Частым дефектом является формирование неправильной кривизны роговицы и хрусталика – астигматизм, в результате чего изображение проецируется в виде не точки, а линии. Из-за неправильного формирования глазного яблока может быть врожденная близорукость (длинный глаз) или дальнозоркость (короткий глаз), не корригирующиеся преломляющими средами глазного яблока и требующие ношения соответствующих очков.
При врожденном помутнении хрусталика возникает препятствие прохождению светового пучка. В результате недоразвития венозной пазухи, склеры и пространства радужно-роговичного угла развивается глаукома, обусловленная повышением внутриглазного давления, что приводит к атрофии светочувствительных и нервных элементов сетчатки.
Пороком развития вспомогательных органов глаза является отсутствие век, а при скрытом глазе глазная щель будет весьма узкой. Встречается нависающая горизонтальная складка верхнего века. Очень редко наблюдается порок развития, когда в сосудистой оболочке отсутствует пигмент (альбиносы).
Для животных свет – это один из наиболее эффективных видов дистантной рецепции. Живые организмы приспособились к восприятию световых лучей, достигающих поверхности Земли в диапазоне от 200 до 1200 нм.
Фоторецепторные системы появляются уже у кишечнополостных – у медуз. У них фоторецепторные клетки развиваются из эктодермы и сосредотачиваются по краю зонта и на щупальцах. У червей светочувствительные клетки рассеяны по всей поверхности тела, но у некоторых из них на головном конце тела они образуют скопления, окруженные пигментом. Эти, так называемые «глазки», позволяют животным ориентироваться по направлению света. У моллюсков возникает оптический аппарат, превращающий поток света в изображение, что дает начало предметному зрению. Оно совершенствовалось путем эволюции фасеточного и камерного глаза. Кроме того, многие беспозвоночные сохранили рассеянные по поверхности тела светочувствительные клетки.
Фоторецепторные системы появляются уже у кишечнополостных – у медуз. У них фоторецепторные клетки развиваются из эктодермы и сосредотачиваются по краю зонта и на щупальцах. У червей светочувствительные клетки рассеяны по всей поверхности тела, но у некоторых из них на головном конце тела они образуют скопления, окруженные пигментом. Эти, так называемые «глазки», позволяют животным ориентироваться по направлению света. У моллюсков возникает оптический аппарат, превращающий поток света в изображение, что дает начало предметному зрению. Оно совершенствовалось путем эволюции фасеточного и камерного глаза. Кроме того, многие беспозвоночные сохранили рассеянные по поверхности тела светочувствительные клетки.
Приспособление механорецепторов к восприятию звуков в ходе эволюции было связано не только с появлением специфических звуковоспринимающих клеток, но и вспомогательных структур, позволяющих дифференцировано реагировать на звуки. В этом отношении животные обнаруживают большое разнообразие, связанное с их экологией.
Среди беспозвоночных органы слуха имеются у членистоногих. Они служат для них органами коммуникации, а в ряде случаев позволяют спасаться от врагов. У одних органы слуха представлены тимпанальными мембранами, у других – хордотональными слуховыми органами.
Тимпанальные мембраны натянуты на прочной хитиновой рамке и выполняют роль барабанной перепонки. Под мембраной лежит трахейный пузырь, а между ним и мембраной – группы рецепторных клеток.
Среди беспозвоночных органы слуха имеются у членистоногих. Они служат для них органами коммуникации, а в ряде случаев позволяют спасаться от врагов. У одних органы слуха представлены тимпанальными мембранами, у других – хордотональными слуховыми органами.
Тимпанальные мембраны натянуты на прочной хитиновой рамке и выполняют роль барабанной перепонки. Под мембраной лежит трахейный пузырь, а между ним и мембраной – группы рецепторных клеток.