В наше время миллионы людей следят за своим весом, потому что они понимают, что в большинстве случаев излишняя полнота вредит здоровью. Поэтому они неустанно «подсчитывают калории». Это означает, что они выясняют, сколько содержится калорий в различных типах пищи и стараются употреблять высококалорийные продукты как можно меньше. Конечно же, соблюдение всех диет и «подсчет калорий» должны проводиться под наблюдением врача. Но какое же отношение имеют калории к весу и здоровью человека?
Давайте же рассмотрим, что такое калория. Если две одинаковые кастрюли с водой поставить на одинаковый огонь на плите, вода в кастрюле, где ее меньше, достигнет температуры кипения первой. Хотя вода в обеих кастрюлях закипает при одинаковой температуре, кастрюле с меньшим количеством воды требуется меньше тепла, чем кастрюле с большим количеством, чтобы вода закипела.
Количество тепла, необходимое для того, чтобы повысить температуру одного грамма воды на один градус по Цельсию, называется грамм-калорией. Килокалория — в тысячу раз большая единица тепла.
Откуда появляется это тепло? Оно появляется в результате сгорания того или иного горючего. На кухне, например, мы используем как горючее газ. Наше тело использует в качестве «горючего» пищу, сжигая ее для того, чтобы нормально функционировать. Если мы хотим измерить нашу пищу как «горючее», мы делаем это в калориях, которые являются мерой тепла. Энергетическая ценность пищи обычно измеряется в килокалориях.
Различные продукты содержат в себе разное количество калорий. Например, в одном грамме белка содержится четыре калории. А в одном грамме жира — целых девять калорий! Человеческому организму все равно, откуда черпать свои калории, лишь бы их хватало для нормального функционирования. А сколько же их нужно организму? Считается, что среднему взрослому в день требуется от двух до трех тысяч калорий. Но многое зависит от того, чем занимается человек. Домашней хозяйке требуется всего две с половиной тысячи калорий, рабочему на заводе — три—четыре тысячи, а спортсмену-атлету — четыре тысячи и даже больше.
Что происходит, если человек получает калорий больше, чем требуется организму? Пища не сгорает, а вместо этого превращается в жир. И именно поэтому многие люди теперь под наблюдением врача «считают калории».
Давайте же рассмотрим, что такое калория. Если две одинаковые кастрюли с водой поставить на одинаковый огонь на плите, вода в кастрюле, где ее меньше, достигнет температуры кипения первой. Хотя вода в обеих кастрюлях закипает при одинаковой температуре, кастрюле с меньшим количеством воды требуется меньше тепла, чем кастрюле с большим количеством, чтобы вода закипела.
Количество тепла, необходимое для того, чтобы повысить температуру одного грамма воды на один градус по Цельсию, называется грамм-калорией. Килокалория — в тысячу раз большая единица тепла.
Откуда появляется это тепло? Оно появляется в результате сгорания того или иного горючего. На кухне, например, мы используем как горючее газ. Наше тело использует в качестве «горючего» пищу, сжигая ее для того, чтобы нормально функционировать. Если мы хотим измерить нашу пищу как «горючее», мы делаем это в калориях, которые являются мерой тепла. Энергетическая ценность пищи обычно измеряется в килокалориях.
Различные продукты содержат в себе разное количество калорий. Например, в одном грамме белка содержится четыре калории. А в одном грамме жира — целых девять калорий! Человеческому организму все равно, откуда черпать свои калории, лишь бы их хватало для нормального функционирования. А сколько же их нужно организму? Считается, что среднему взрослому в день требуется от двух до трех тысяч калорий. Но многое зависит от того, чем занимается человек. Домашней хозяйке требуется всего две с половиной тысячи калорий, рабочему на заводе — три—четыре тысячи, а спортсмену-атлету — четыре тысячи и даже больше.
Что происходит, если человек получает калорий больше, чем требуется организму? Пища не сгорает, а вместо этого превращается в жир. И именно поэтому многие люди теперь под наблюдением врача «считают калории».
Во-первых, зачем нужно делать воду питьевой? Почему мы не можем ее пить такой, какой она бывает в природе? Причина состоит в том, что в наши дни вряд ли можно найти действительно чистую воду.
Самый чистый источник воды — это снег, следующей по степени чистоты идет дождевая вода, но в ней уже можно обнаружить растворенные газы из воздуха и следы углекислоты, хлоридов, сульфатов, нитратов и аммиака. Даже вода горных ручьев и озер может содержать в себе неорганические соли. Вода рек и озер в низменностях обычно очень сильно загрязнена. Родниковая и колодезная вода профильтровывается землей, и поэтому она вполне чистая, но в ней тоже могут содержаться неорганические соли.
Выходит, что любая вода, которую мы пьем, должна быть в той или иной степени предварительно очищена. Существует много способов для этого. Один из них — это просто отстой. Когда вода хранится в резервуаре, происходят некоторые процессы. Твердые вредные вещества оседают на дно, то есть идет процесс, называемый химиками выпадением в осадок. Также во время отстоя обезвреживаются многие бактерии.
Но метод отстоя не гарантирует полной очистки. Для лучшего выпадения в осадок вредных веществ в воду добавляют химикаты. Вдобавок воду можно подвергнуть аэрации, чтобы устранить привкусы и запахи и растворенные в ней газы.
Уже давно было обнаружено, что если воду профильтровать, пропустив через песок, то можно очистить ее не только от грязи, но и от почти всех бактерий. Были разработаны различные методы фильтрации воды при помощи песка, в том числе на большой скорости.
Общепринятый метод очистки воды — дешевое, быстрое и эффективное хлорирование. На четыре миллиона литров воды добавляется два килограмма хлорки. Этого вполне достаточно, чтобы уничтожить большую часть опасных бактерий, содержащихся в воде.
Самый чистый источник воды — это снег, следующей по степени чистоты идет дождевая вода, но в ней уже можно обнаружить растворенные газы из воздуха и следы углекислоты, хлоридов, сульфатов, нитратов и аммиака. Даже вода горных ручьев и озер может содержать в себе неорганические соли. Вода рек и озер в низменностях обычно очень сильно загрязнена. Родниковая и колодезная вода профильтровывается землей, и поэтому она вполне чистая, но в ней тоже могут содержаться неорганические соли.
Выходит, что любая вода, которую мы пьем, должна быть в той или иной степени предварительно очищена. Существует много способов для этого. Один из них — это просто отстой. Когда вода хранится в резервуаре, происходят некоторые процессы. Твердые вредные вещества оседают на дно, то есть идет процесс, называемый химиками выпадением в осадок. Также во время отстоя обезвреживаются многие бактерии.
Но метод отстоя не гарантирует полной очистки. Для лучшего выпадения в осадок вредных веществ в воду добавляют химикаты. Вдобавок воду можно подвергнуть аэрации, чтобы устранить привкусы и запахи и растворенные в ней газы.
Уже давно было обнаружено, что если воду профильтровать, пропустив через песок, то можно очистить ее не только от грязи, но и от почти всех бактерий. Были разработаны различные методы фильтрации воды при помощи песка, в том числе на большой скорости.
Общепринятый метод очистки воды — дешевое, быстрое и эффективное хлорирование. На четыре миллиона литров воды добавляется два килограмма хлорки. Этого вполне достаточно, чтобы уничтожить большую часть опасных бактерий, содержащихся в воде.
Акваланг — это современное приспособление для погружения на глубину. Он дает возможность ныряльщику дышать под водой, не завися при этом от подачи воздуха с корабля. Аквалангист носит свой собственный запас воздуха с собой прикрепленным к спине. Он — свободный водолаз.
Запас воздуха в сжатом виде находится в одном (или более) стальном баллоне акваланга. От клапана отходит трубка, ведущая ко рту. Она сделана таким образом, что ныряльщик может держать ее, зажимая зубами. Нос закрыт маской, и аквалангист дышит одним ртом.
С аквалангом на спине и специальным тяжелым поясом, удерживающим его под водой, человек может плавать почти так же свободно, как рыба. При плавании используются большие ласты на ногах, чтобы обходиться без помощи рук, освобождающихся, таким образом, чтобы держать камеру или гарпун. Если не погружаться на большую глубину, аквалангист может оставаться под водой полчаса и даже больше.
Но даже самый современный акваланг не позволяет человеку опуститься глубже, чем на сто метров. На такой глубине тяжесть толщи воды оказывает давление в десять раз большее, чем на поверхности. Воздух в баллонах расходуется в десять раз быстрее, так что даже очень больших баллонов хватает всего на несколько минут.
Есть еще одна проблема, связанная с погружением на очень большие глубины. Сжатый воздух в баллонах состоит, как и атмосферный воздух, на четыре пятых из азота и всего на одну пятую из кислорода. Для поддержания жизни нам необходим кислород. Обычно вдыхаемый нами азот мы тут же выдыхаем обратно. Но в условиях увеличивающегося давления воздуха часть азота растворяется в крови и тканях.
Когда аквалангист поднимается наверх, азот должен выйти из его крови и тканей. Если он не может достаточно быстро покинуть организм через легкие, он начинает превращаться в теле с маленькие пузырьки. Пузырьки защемляют нервы и закупоривают кровеносные сосуды, и у аквалангиста начинается кессонная болезнь, сопровождающаяся страшными болями. В результате тяжелых случаев кессонной болезни человек может умереть или остаться инвалидом на всю жизнь.
Именно поэтому аквалангист должен подниматься на поверхность очень медленно, если он находился на глубине от шестидесяти до ста метров. Во время подъема он должен делать частые остановки.
Запас воздуха в сжатом виде находится в одном (или более) стальном баллоне акваланга. От клапана отходит трубка, ведущая ко рту. Она сделана таким образом, что ныряльщик может держать ее, зажимая зубами. Нос закрыт маской, и аквалангист дышит одним ртом.
С аквалангом на спине и специальным тяжелым поясом, удерживающим его под водой, человек может плавать почти так же свободно, как рыба. При плавании используются большие ласты на ногах, чтобы обходиться без помощи рук, освобождающихся, таким образом, чтобы держать камеру или гарпун. Если не погружаться на большую глубину, аквалангист может оставаться под водой полчаса и даже больше.
Но даже самый современный акваланг не позволяет человеку опуститься глубже, чем на сто метров. На такой глубине тяжесть толщи воды оказывает давление в десять раз большее, чем на поверхности. Воздух в баллонах расходуется в десять раз быстрее, так что даже очень больших баллонов хватает всего на несколько минут.
Есть еще одна проблема, связанная с погружением на очень большие глубины. Сжатый воздух в баллонах состоит, как и атмосферный воздух, на четыре пятых из азота и всего на одну пятую из кислорода. Для поддержания жизни нам необходим кислород. Обычно вдыхаемый нами азот мы тут же выдыхаем обратно. Но в условиях увеличивающегося давления воздуха часть азота растворяется в крови и тканях.
Когда аквалангист поднимается наверх, азот должен выйти из его крови и тканей. Если он не может достаточно быстро покинуть организм через легкие, он начинает превращаться в теле с маленькие пузырьки. Пузырьки защемляют нервы и закупоривают кровеносные сосуды, и у аквалангиста начинается кессонная болезнь, сопровождающаяся страшными болями. В результате тяжелых случаев кессонной болезни человек может умереть или остаться инвалидом на всю жизнь.
Именно поэтому аквалангист должен подниматься на поверхность очень медленно, если он находился на глубине от шестидесяти до ста метров. Во время подъема он должен делать частые остановки.
Ученые, изучающие море, называются океанографами. Поскольку глубины океана темны и холодны, ученые знают о них не так уж и много. Некоторые части океанского дна изучались лишь через иллюминаторы исследовательских подводных лодок и через окуляры батискафов, сделанных специально для изучения глубин моря, но все равно этой информации явно недостаточно.
Одна из интересующих океанографов проблем — это глубина океана. Измерение ее называется «прослушиванием глубины». В старину измерение делалось при помощи веревки с привязанным к ней грузом, которую опускали в воду. Позже для этого стали использовать очень тонкую проволоку, типа той, из которой делаются фортепьянные струны.
В наши дни ученые могут составить гораздо более точное представление о глубине океанского дна при помощи одного изобретения, называемого эхолотом. В нем для исследования океанского дна используется эхо.
Устройство, установленное на борту корабля, посылает звуковой сигнал. Звук проходит сквозь толщу воды со скоростью около одной мили в секунду. Он отражается ото дна и улавливается на обратном пути специальным прибором. Чем глубже вода, тем больше времени требуется для эха, чтобы достичь борта корабля.
Современный эхолот посылает ко дну ультразвуковые волны. Потом приборы регистрируют эхо в виде черной линии на листе специальной бумаги. Обычно эта бумага содержит в себе расшифровку этих знаков в морских саженях (морская сажень равна 1,8 метра).
При помощи эхолота можно легко определить глубину моря. Но прибор может сделать не только это. Он может в подробностях нарисовать линию морского дна под кораблем, если прослушивать дно через каждые несколько метров по ходу корабля.
Если корабль проходит над подводной лодкой, эхолот регистрирует ее точную форму. Если дно ровное, эхолот таким же его и изобразит. Эхолот не пропустит даже маленькой неровности дна высотой меньше метра!
Одна из интересующих океанографов проблем — это глубина океана. Измерение ее называется «прослушиванием глубины». В старину измерение делалось при помощи веревки с привязанным к ней грузом, которую опускали в воду. Позже для этого стали использовать очень тонкую проволоку, типа той, из которой делаются фортепьянные струны.
В наши дни ученые могут составить гораздо более точное представление о глубине океанского дна при помощи одного изобретения, называемого эхолотом. В нем для исследования океанского дна используется эхо.
Устройство, установленное на борту корабля, посылает звуковой сигнал. Звук проходит сквозь толщу воды со скоростью около одной мили в секунду. Он отражается ото дна и улавливается на обратном пути специальным прибором. Чем глубже вода, тем больше времени требуется для эха, чтобы достичь борта корабля.
Современный эхолот посылает ко дну ультразвуковые волны. Потом приборы регистрируют эхо в виде черной линии на листе специальной бумаги. Обычно эта бумага содержит в себе расшифровку этих знаков в морских саженях (морская сажень равна 1,8 метра).
При помощи эхолота можно легко определить глубину моря. Но прибор может сделать не только это. Он может в подробностях нарисовать линию морского дна под кораблем, если прослушивать дно через каждые несколько метров по ходу корабля.
Если корабль проходит над подводной лодкой, эхолот регистрирует ее точную форму. Если дно ровное, эхолот таким же его и изобразит. Эхолот не пропустит даже маленькой неровности дна высотой меньше метра!
Когда высокие горы упоминаются в газетах или книгах, нам обычно сообщают их точную высоту в метрах. Откуда же люди могут знать точную высоту горы, особенно если ни один человек на нее еще не забирался?
Это делается при помощи одной из самых старых методик, которой издавна пользовались землемеры, или, как их теперь называют, геодезисты. Геодезия — это отрасль строительного дела. Она связана с определением форм и размеров любой из частей земной поверхности.
Существуют различные виды геодезической съемки, но все они основываются на методе, известном как «триангуляция». Когда вы будете заниматься геометрией, вы узнаете, что, зная одну сторону и два угла любого треугольника (или две стороны и один угол), можно вычислить все остальные его параметры.
Этот метод остается в основе таким же вне зависимости от размеров измеряемой площади — будь это один или тысяча гектаров. В любом случае вы начинаете с измерения одной из сторон при помощи цепи, стальной проволоки или чего-нибудь в этом духе.
Эта мера становится одной из сторон треугольника, и обычно это ровное место между двумя природными ориентирами на одном уровне. Затем выбирается третий ориентир, и он становится вершиной треугольника. Затем вы измеряете углы, которые он образует с каждым из концов первой измеренной вами линии. Теперь у вас есть все условия, необходимые для измерения площади треугольника, описанные выше (одна сторона и два угла).
Прибор для измерения углов называется транспортиром. Теперь, когда у вас есть площадь этого треугольника, вы продолжаете делить ваш участок земли на треугольники до тех пор, пока не измерите весь этот участок.
Транспортиром можно измерять углы не только на горизонтальном уровне, но и по вертикали. Это называется нивелированием, так как в основании инструмента для этой операции лежит ватерпас (нивелир), с помощью которого определяется, насколько ровна горизонтальная поверхность.
Фиксируя взгляд на любой точке горы, можно использовать тот же способ измерения углов, что используется на горизонтальном уровне, и вычислить одну из сторон, которая является в данном случае высотой горы.
Это делается при помощи одной из самых старых методик, которой издавна пользовались землемеры, или, как их теперь называют, геодезисты. Геодезия — это отрасль строительного дела. Она связана с определением форм и размеров любой из частей земной поверхности.
Существуют различные виды геодезической съемки, но все они основываются на методе, известном как «триангуляция». Когда вы будете заниматься геометрией, вы узнаете, что, зная одну сторону и два угла любого треугольника (или две стороны и один угол), можно вычислить все остальные его параметры.
Этот метод остается в основе таким же вне зависимости от размеров измеряемой площади — будь это один или тысяча гектаров. В любом случае вы начинаете с измерения одной из сторон при помощи цепи, стальной проволоки или чего-нибудь в этом духе.
Эта мера становится одной из сторон треугольника, и обычно это ровное место между двумя природными ориентирами на одном уровне. Затем выбирается третий ориентир, и он становится вершиной треугольника. Затем вы измеряете углы, которые он образует с каждым из концов первой измеренной вами линии. Теперь у вас есть все условия, необходимые для измерения площади треугольника, описанные выше (одна сторона и два угла).
Прибор для измерения углов называется транспортиром. Теперь, когда у вас есть площадь этого треугольника, вы продолжаете делить ваш участок земли на треугольники до тех пор, пока не измерите весь этот участок.
Транспортиром можно измерять углы не только на горизонтальном уровне, но и по вертикали. Это называется нивелированием, так как в основании инструмента для этой операции лежит ватерпас (нивелир), с помощью которого определяется, насколько ровна горизонтальная поверхность.
Фиксируя взгляд на любой точке горы, можно использовать тот же способ измерения углов, что используется на горизонтальном уровне, и вычислить одну из сторон, которая является в данном случае высотой горы.
Путешествуя по земле, вы не заблудитесь, если знаете, куда ведет дорога, по которой вы идете. Да и путешествуя на корабле, если вам виден берег, вы легко сможете определить свое местоположение, узнавая холмы, реки, горы, леса, пляжи и так далее.
В давние времена моряки предпочитали держаться примерно на расстоянии трех—четырех километров от берега, так что им всегда было видно землю. Люди, отваживавшиеся выйти в открытый океан, подвергались большому риску, потому что у них не было надежных способов определения своего местоположения.
Позднее такой способ был найден, и моряки получили возможность определять, где они находятся, узнавая широту и долготу этого места. Широта говорит вам, на каком расстоянии к северу или югу от экватора находится это место. Долгота показывает, насколько это восточнее или западнее воображаемой линии, проходящей через
Гринвич. Измерения этих показаний даны в градусах.
Чтобы определить широту и долготу в море, штурман смотрит на положение звезд и Солнца. Днем он узнает широту, определив, как высоко поднимается Солнце в полдень. Ночью он делает это, определяя высоту ночных светил. Долгота определяется сравнением времени на борту со временем в Гринвиче (Англия). Если время на корабле более раннее, это значит, что вы находитесь западнее Гринвича; если более позднее — значит, восточнее. Каждый час разницы во времени равняется пятнадцати градусам к западу или востоку.
Секстант — это прибор, используемый штурманом для определения положения Солнца, Луны, планет и некоторых звезд. Секстант имеет форму куска круглого пирога, с градуированной шкалой на его закругленной части.
Один конец стрелки-указателя прикреплен к верхней точке секстанта, так же, как и подвижное зеркало. Другой конец указывает на шкалу. Также к секстанту пристроен телескоп и зеркальное стекло перед ним. Штурман глядит на горизонт через телескоп и это зеркало и двигает зеркало до тех пор, пока отражение наблюдаемого светила не попадет на него, как бы коснувшись горизонта. Свободный конец стрелки укажет на шкале высоту наблюдаемого светила.
В давние времена моряки предпочитали держаться примерно на расстоянии трех—четырех километров от берега, так что им всегда было видно землю. Люди, отваживавшиеся выйти в открытый океан, подвергались большому риску, потому что у них не было надежных способов определения своего местоположения.
Позднее такой способ был найден, и моряки получили возможность определять, где они находятся, узнавая широту и долготу этого места. Широта говорит вам, на каком расстоянии к северу или югу от экватора находится это место. Долгота показывает, насколько это восточнее или западнее воображаемой линии, проходящей через
Гринвич. Измерения этих показаний даны в градусах.
Чтобы определить широту и долготу в море, штурман смотрит на положение звезд и Солнца. Днем он узнает широту, определив, как высоко поднимается Солнце в полдень. Ночью он делает это, определяя высоту ночных светил. Долгота определяется сравнением времени на борту со временем в Гринвиче (Англия). Если время на корабле более раннее, это значит, что вы находитесь западнее Гринвича; если более позднее — значит, восточнее. Каждый час разницы во времени равняется пятнадцати градусам к западу или востоку.
Секстант — это прибор, используемый штурманом для определения положения Солнца, Луны, планет и некоторых звезд. Секстант имеет форму куска круглого пирога, с градуированной шкалой на его закругленной части.
Один конец стрелки-указателя прикреплен к верхней точке секстанта, так же, как и подвижное зеркало. Другой конец указывает на шкалу. Также к секстанту пристроен телескоп и зеркальное стекло перед ним. Штурман глядит на горизонт через телескоп и это зеркало и двигает зеркало до тех пор, пока отражение наблюдаемого светила не попадет на него, как бы коснувшись горизонта. Свободный конец стрелки укажет на шкале высоту наблюдаемого светила.
Чтобы понять это, мы сначала должны разобраться в том, какие силы позволяют самолету держаться в воздухе. Так как самолет весит больше, чем такой же объем воздуха, ему требуется сила, поддерживающая его в воздухе. Она называется силой подъема.
Самолет развивает эту силу, стремительно двигаясь вперед и преодолевая сопротивление воздуха. Почему это движение создает подъемную силу? Благодаря тому, что в процессе его воздушные массы обтекают крылья. Воздух, рассеченный аэропланом, проходит над и под крыльями. Та его часть, что проходит под крыльям, толкает самолет вверх. Крыло имеет выпуклую форму на верхней стороне, и воздух, огибая эту выпуклость, в этих точках создает зону пониженного давления. Таким образом, возникают две силы, действующие одновременно: воздух под крыльями толкает самолет вверх, а пониженное давление над крыльями способствует этому движению. В результате получается подъем.
Чтобы двигаться вперед, самолету требуется сила двигателя. Пропеллеры ввинчиваются в толщу воздуха точно так, как шуруп — в дерево. Этот эффект становится возможен благодаря тому, что воздух при быстром движении сквозь него, равно как и при быстром движении самого воздуха, начинает действовать как плотная среда. Это движение вперед называется тягой. Тяга преодолевает сопротивление воздуха, подъемная сила — силу гравитации — и самолет летит по воздуху.
Пока подъемная сила уравновешивает силы гравитации, самолет движется все прямо на одном и том же уровне. При увеличении скорости самолет устремится ввысь, так как подъемная сила увеличилась, и пилоту необходимо немного опустить нос самолета, чтобы противодействовать этой силе.
Если скорость снижается, пилот должен поднимать нос самолета немного вверх. Если этого не делать, происходит срыв воздушного потока вокруг крыльев, самолет теряет подъемную силу и, соответственно, скорость, рискуя войти в штопор.
Если срыв потока происходит высоко в небе, этой высоты хватает, чтобы выровнять самолет и вновь набрать скорость, но если это произойдет невысоко над землей, катастрофа неизбежна.
Самолет развивает эту силу, стремительно двигаясь вперед и преодолевая сопротивление воздуха. Почему это движение создает подъемную силу? Благодаря тому, что в процессе его воздушные массы обтекают крылья. Воздух, рассеченный аэропланом, проходит над и под крыльями. Та его часть, что проходит под крыльям, толкает самолет вверх. Крыло имеет выпуклую форму на верхней стороне, и воздух, огибая эту выпуклость, в этих точках создает зону пониженного давления. Таким образом, возникают две силы, действующие одновременно: воздух под крыльями толкает самолет вверх, а пониженное давление над крыльями способствует этому движению. В результате получается подъем.
Чтобы двигаться вперед, самолету требуется сила двигателя. Пропеллеры ввинчиваются в толщу воздуха точно так, как шуруп — в дерево. Этот эффект становится возможен благодаря тому, что воздух при быстром движении сквозь него, равно как и при быстром движении самого воздуха, начинает действовать как плотная среда. Это движение вперед называется тягой. Тяга преодолевает сопротивление воздуха, подъемная сила — силу гравитации — и самолет летит по воздуху.
Пока подъемная сила уравновешивает силы гравитации, самолет движется все прямо на одном и том же уровне. При увеличении скорости самолет устремится ввысь, так как подъемная сила увеличилась, и пилоту необходимо немного опустить нос самолета, чтобы противодействовать этой силе.
Если скорость снижается, пилот должен поднимать нос самолета немного вверх. Если этого не делать, происходит срыв воздушного потока вокруг крыльев, самолет теряет подъемную силу и, соответственно, скорость, рискуя войти в штопор.
Если срыв потока происходит высоко в небе, этой высоты хватает, чтобы выровнять самолет и вновь набрать скорость, но если это произойдет невысоко над землей, катастрофа неизбежна.
Воздушный шар — это самый простой воздухоплавательный аппарат. Обычно он состоит из легкого сферического или цилиндрического «мешка», сделанного из бумаги, резины, шелка или прорезиненного материала, содержащего внутри горячий воздух, водород или гелий. К шару может быть прикреплена при помощи веревок или сетки корзина, или гондола, в которой перевозят пассажиров и грузы.
Шар плавает в воздухе по той же причине, по которой рыба плавает в воде. Каждый из них вытесняет из воды или воздуха, окружающих их, массу больше их собственной.
Пока шар и его снаряжение весят меньше, чем вытесненный воздух, он будет подниматься. Если он потеряет какую-то часть поднимающего его газа и его масса увеличится, он начнет падать. В качестве поднимающего газа используют горячий воздух, водород или гелий, потому что все они легче обычного атмосферного воздуха.
Отпущенный на свободу шар будет подниматься до тех пор, пока вес вытесняемого воздуха не уравняется с его собственным. Чтобы изменить высоту полета, воздухоплаватель должен либо уменьшить поднимающие его силы, чтобы опуститься, либо уменьшить его вес, чтобы подняться. Чтобы спуститься, он должен выпустить немного газа через клапан наверху шара. Чтобы подняться выше, он должен выкинуть за борт часть груза (балласта).
Поскольку ни балласт, ни газ нельзя восполнить во время полета, очевидно, что возможности воздухоплавателя управлять полетом шара сильно ограничены. В лучшем случае он может опускаться и подниматься лишь более или менее короткий промежуток времени, в зависимости от величины шара.
Поднявшись ввысь, шар попадает в полную зависимость от ветров. В полете шаром практически невозможно направлять. Он может лишь плыть по ветру, и по этой причине от него очень мало пользы как от транспортного средства.
В наши дни воздушные шары в основном используются для исследования верхних слоев атмосферы. Во время войны они использовались как воздушные пункты наблюдения, а также из них сооружали своего рода воздушные заграждения (нечто вроде воздушных заборов) для защиты городов от налетов бомбардировщиков.
Шар плавает в воздухе по той же причине, по которой рыба плавает в воде. Каждый из них вытесняет из воды или воздуха, окружающих их, массу больше их собственной.
Пока шар и его снаряжение весят меньше, чем вытесненный воздух, он будет подниматься. Если он потеряет какую-то часть поднимающего его газа и его масса увеличится, он начнет падать. В качестве поднимающего газа используют горячий воздух, водород или гелий, потому что все они легче обычного атмосферного воздуха.
Отпущенный на свободу шар будет подниматься до тех пор, пока вес вытесняемого воздуха не уравняется с его собственным. Чтобы изменить высоту полета, воздухоплаватель должен либо уменьшить поднимающие его силы, чтобы опуститься, либо уменьшить его вес, чтобы подняться. Чтобы спуститься, он должен выпустить немного газа через клапан наверху шара. Чтобы подняться выше, он должен выкинуть за борт часть груза (балласта).
Поскольку ни балласт, ни газ нельзя восполнить во время полета, очевидно, что возможности воздухоплавателя управлять полетом шара сильно ограничены. В лучшем случае он может опускаться и подниматься лишь более или менее короткий промежуток времени, в зависимости от величины шара.
Поднявшись ввысь, шар попадает в полную зависимость от ветров. В полете шаром практически невозможно направлять. Он может лишь плыть по ветру, и по этой причине от него очень мало пользы как от транспортного средства.
В наши дни воздушные шары в основном используются для исследования верхних слоев атмосферы. Во время войны они использовались как воздушные пункты наблюдения, а также из них сооружали своего рода воздушные заграждения (нечто вроде воздушных заборов) для защиты городов от налетов бомбардировщиков.
Падающее тело — это ничем не поддерживаемое тело, притягиваемое к поверхности Земли силой гравитации. Гравитация — это сила, с которой Земля притягивает к себе другие предметы.
При отсутствии сопротивления воздуха тела падают в соответствии с законом, известным, как закон свободного падения, впервые сформулированным знаменитым итальянским ученым Галилеем в шестнадцатом столетии.
Галилей провел в своей лаборатории множество опытов с падающими телами. На основании этих экспериментов он вывел этот закон: в безвоздушном пространстве скорость падающего тела зависит только от высоты падения и не зависит он его массы.
Чем дольше тело находится в свободном падении, тем быстрее оно движется. Когда какое-нибудь тело увеличивает скорость, мы говорим, что оно получило ускорение. Ускорение свободно падающего тела равняется 9,8 метрам в секунду.
Это означает, что за каждую секунду падения тело увеличивает скорость своего падения примерно на десять метров в секунду.
После первой секунды падающее тело имеет скорость 9,8 метров в секунду. После первых двух секунд его скорость становится 9,8 плюс 9,8 метров, то 19,6 метров в секунду и так далее.
Проходя через слой воздуха, падающее тело не может набирать скорость в такой прогрессии. Оно может набрать лишь определенную скорость. Ввиду сопротивления воздуха существует предел скорости падающего предмета.
Это истинно даже для самых тяжелых предметов. Они получают ускорение при начале падения, но одновременно наращивается и сопротивление воздуха. Вскоре оно уравновешивает силу гравитации. С этого момента ускорение падения тела перестает нарастать. Оно достигает своей «конечной скорости» и не изменяется до конца падения.
При отсутствии сопротивления воздуха тела падают в соответствии с законом, известным, как закон свободного падения, впервые сформулированным знаменитым итальянским ученым Галилеем в шестнадцатом столетии.
Галилей провел в своей лаборатории множество опытов с падающими телами. На основании этих экспериментов он вывел этот закон: в безвоздушном пространстве скорость падающего тела зависит только от высоты падения и не зависит он его массы.
Чем дольше тело находится в свободном падении, тем быстрее оно движется. Когда какое-нибудь тело увеличивает скорость, мы говорим, что оно получило ускорение. Ускорение свободно падающего тела равняется 9,8 метрам в секунду.
Это означает, что за каждую секунду падения тело увеличивает скорость своего падения примерно на десять метров в секунду.
После первой секунды падающее тело имеет скорость 9,8 метров в секунду. После первых двух секунд его скорость становится 9,8 плюс 9,8 метров, то 19,6 метров в секунду и так далее.
Проходя через слой воздуха, падающее тело не может набирать скорость в такой прогрессии. Оно может набрать лишь определенную скорость. Ввиду сопротивления воздуха существует предел скорости падающего предмета.
Это истинно даже для самых тяжелых предметов. Они получают ускорение при начале падения, но одновременно наращивается и сопротивление воздуха. Вскоре оно уравновешивает силу гравитации. С этого момента ускорение падения тела перестает нарастать. Оно достигает своей «конечной скорости» и не изменяется до конца падения.
Мы настолько привыкли к тому, что термометры состоят из тоненькой трубки, заполненной ртутью, что редко задумываемся о том, зачем нужна эта ртуть в этой трубке, то есть как этот прибор работает.
Термометр, или градусник,— это просто прибор для измерения количества тепла. Его принцип работы в том, что тепло способно влиять на различные вещества, изменяя их. Мы наблюдаем за изменениями, происходящими с веществом, и считаем, что они произошли под воздействием определенного количества тепла.
Ртуть используется в градусниках по той простой причине, что она очень быстро реагирует на повышение температуры. Расширение этого материала происходит равномерно, и это очень хорошо заметно. В современных ртутных градусниках тепло заставляет ртуть расширяться, верхняя отметка ее начинается двигаться вверх по узкой стеклянной трубке, а шкала на термометре показывает нам, насколько высоко она поднялась.
Спирт, например, тоже может быть использован в градусниках. Но использование его ведет к определенным проблемам. Он легко закипает, и поэтому от спирта мало проку при измерении высоких температур. Но зато он очень удобен для измерения чрезвычайно низких температур.
Есть и другие типы термометров, которые обходятся вовсе без жидкостей. Вместо них используются, например, два металла. Железную и латунную пластинки соединяют, скрутив в пружину. Один конец этой пружины зафиксирован, а другой снабжен стрелкой-указателем и может свободно двигаться.
Эти металлы расширяются и сжимаются поразному. При изменении температуры пружина закручивается и раскручивается, и эти движения перемещают указатель по круглой градуированной шкале.
Прикрепив пишущее устройство к указателю и снабдив градусник вращающейся бумажной лентой, мы получим термометр, который будет записывать сведения об изменениях в температуре сколь угодно длительный период времени.
Термометр, или градусник,— это просто прибор для измерения количества тепла. Его принцип работы в том, что тепло способно влиять на различные вещества, изменяя их. Мы наблюдаем за изменениями, происходящими с веществом, и считаем, что они произошли под воздействием определенного количества тепла.
Ртуть используется в градусниках по той простой причине, что она очень быстро реагирует на повышение температуры. Расширение этого материала происходит равномерно, и это очень хорошо заметно. В современных ртутных градусниках тепло заставляет ртуть расширяться, верхняя отметка ее начинается двигаться вверх по узкой стеклянной трубке, а шкала на термометре показывает нам, насколько высоко она поднялась.
Спирт, например, тоже может быть использован в градусниках. Но использование его ведет к определенным проблемам. Он легко закипает, и поэтому от спирта мало проку при измерении высоких температур. Но зато он очень удобен для измерения чрезвычайно низких температур.
Есть и другие типы термометров, которые обходятся вовсе без жидкостей. Вместо них используются, например, два металла. Железную и латунную пластинки соединяют, скрутив в пружину. Один конец этой пружины зафиксирован, а другой снабжен стрелкой-указателем и может свободно двигаться.
Эти металлы расширяются и сжимаются поразному. При изменении температуры пружина закручивается и раскручивается, и эти движения перемещают указатель по круглой градуированной шкале.
Прикрепив пишущее устройство к указателю и снабдив градусник вращающейся бумажной лентой, мы получим термометр, который будет записывать сведения об изменениях в температуре сколь угодно длительный период времени.
Ответом на этот вопрос является само определение огня. Огонь сопровождает горение — быстро протекающую реакцию, при которой выделяется тепло и свет.
Существует несколько видов химических реакций, которые могут иметь результатом явление, которое мы называем огнем. Самая обычная из них — реакция между кислородом и топливом. Если в результате ее выделяется тепло и свет, мы получаем огонь.
Чтобы развести огонь, необходимы три вещи. Первое — это горючее, второе — кислород. Горючее быстро начинает соединяться с кислородом. Когда в костре горят дрова или в плите горит газ, происходит энергичное взаимодействие между топливом и содержащимся в воздухе кислородом.
Третья вещь, необходимая нам для разведения огня,— это тепло. Бумага или дерево не могут загореться просто от одного воздействия на них воздуха. Обычно для этого нужна зажженная спичка. Когда бумага нагревается достаточно сильно, кислород начинает активно вступать с ней в реакцию,— и бумагу охватывает пламя.
Каждый вид топлива может загореться лишь при определенной температуре. Она называется температурой его возгорания.
Представьте себе деревянную палочку, нагреваемую до температуры возгорания при помощи горящей спички. Она охватывается пламенем не вся. Причина этого состоит в том, что кислород не соприкасается с палочкой в целом, а только с верхним ее слоем, превращающимся под действием жара в газообразное вещество.
Поскольку нагрев продолжается, частички газа и кислород в воздухе двигаются очень быстро. В этих условиях газовые и кислородные частицы соединяются очень легко и быстро. Выделяется тепло и свет: мы получили огонь.
При некоторых видах горения никакого света не выделяется. Если топливо реагирует с кислородом медленно, выделяется одно лишь тепло. Это происходит, например, когда ржавчина съедает железо. Ржавление — это всего лишь очень медленная форма горения, настолько медленная, что вы даже не можете почувствовать тепла, выделяемого при этом. Огонь — это быстрое горение, или воспламенение, а при воспламенении выделяется и тепло, и свет.
Существует несколько видов химических реакций, которые могут иметь результатом явление, которое мы называем огнем. Самая обычная из них — реакция между кислородом и топливом. Если в результате ее выделяется тепло и свет, мы получаем огонь.
Чтобы развести огонь, необходимы три вещи. Первое — это горючее, второе — кислород. Горючее быстро начинает соединяться с кислородом. Когда в костре горят дрова или в плите горит газ, происходит энергичное взаимодействие между топливом и содержащимся в воздухе кислородом.
Третья вещь, необходимая нам для разведения огня,— это тепло. Бумага или дерево не могут загореться просто от одного воздействия на них воздуха. Обычно для этого нужна зажженная спичка. Когда бумага нагревается достаточно сильно, кислород начинает активно вступать с ней в реакцию,— и бумагу охватывает пламя.
Каждый вид топлива может загореться лишь при определенной температуре. Она называется температурой его возгорания.
Представьте себе деревянную палочку, нагреваемую до температуры возгорания при помощи горящей спички. Она охватывается пламенем не вся. Причина этого состоит в том, что кислород не соприкасается с палочкой в целом, а только с верхним ее слоем, превращающимся под действием жара в газообразное вещество.
Поскольку нагрев продолжается, частички газа и кислород в воздухе двигаются очень быстро. В этих условиях газовые и кислородные частицы соединяются очень легко и быстро. Выделяется тепло и свет: мы получили огонь.
При некоторых видах горения никакого света не выделяется. Если топливо реагирует с кислородом медленно, выделяется одно лишь тепло. Это происходит, например, когда ржавчина съедает железо. Ржавление — это всего лишь очень медленная форма горения, настолько медленная, что вы даже не можете почувствовать тепла, выделяемого при этом. Огонь — это быстрое горение, или воспламенение, а при воспламенении выделяется и тепло, и свет.
Одни предметы кажутся на ощупь горячими, другие — холодными. Иногда воздух кажется нам раскаленным, иногда — прохладным. Почему это так?
Согласно современной теории, тепло получается в результате движения молекул и атомов. Например, молекулы, из которых состоит воздух, способны свободно двигаться, натыкаясь друг на друга и на различные предметы на своем пути. Так вот, эти молекулы могут двигаться быстрее или медленнее. Если они двигаются быстро, мы говорим, что температура воздуха высокая и что воздух горячий. Если они двигаются медленно (как бывает в холодный день), мы ощущаем, что воздух холодный.
Что касается жидких и твердых веществ, то атомы и молекулы в них хотя и не могут передвигаться свободно, но все же способны ускорять свое движение. Например, в горячем железном кубике атомы совершают около миллиона движений в секунду, то есть движутся чрезвычайно быстро. Если вы притронетесь кончиком пальца к этому кубику, вы почувствуете боль, потому что молекулам вашей кожи при внезапном и резком соприкосновении с быстро движущимися частицами железа передалось это движение.
Действительно ли молекулы движутся? Многочисленные эксперименты полностью подтверждают это. Действительно, под микроскопом можно увидеть, как крохотные частички материи в капле воды постоянно вздрагивают под ударами миллионов невидимых движущихся молекул.
Средняя скорость движения молекулы кислорода при температуре таяния льда равняется примерно четыремстам двадцати метрам в секунду, а молекулы водорода — в четыре раза быстрее. В пятнадцати кубических сантиметрах воздуха каждую секунду происходят тысячи миллиардов столкновений между молекулами!
Тепло и температура — это не одно и то же. Тепловая энергия, которую содержит в себе тело, зависит от энергии движения его молекул и атомов. Количество тепла измеряется в калориях. Калория равняется количеству тепла, которое требуется для того, чтобы подогреть один грамм воды на один градус по Цельсию. А температура тела показывает, до какой степени, или «градуса», эта тепловая энергия его подогрела. Самая низкая возможная температура — 273 градуса ниже нуля по Цельсию. Ученые считают, что при такой температуре молекулы перестают двигаться, то есть находятся в состоянии покоя.
Согласно современной теории, тепло получается в результате движения молекул и атомов. Например, молекулы, из которых состоит воздух, способны свободно двигаться, натыкаясь друг на друга и на различные предметы на своем пути. Так вот, эти молекулы могут двигаться быстрее или медленнее. Если они двигаются быстро, мы говорим, что температура воздуха высокая и что воздух горячий. Если они двигаются медленно (как бывает в холодный день), мы ощущаем, что воздух холодный.
Что касается жидких и твердых веществ, то атомы и молекулы в них хотя и не могут передвигаться свободно, но все же способны ускорять свое движение. Например, в горячем железном кубике атомы совершают около миллиона движений в секунду, то есть движутся чрезвычайно быстро. Если вы притронетесь кончиком пальца к этому кубику, вы почувствуете боль, потому что молекулам вашей кожи при внезапном и резком соприкосновении с быстро движущимися частицами железа передалось это движение.
Действительно ли молекулы движутся? Многочисленные эксперименты полностью подтверждают это. Действительно, под микроскопом можно увидеть, как крохотные частички материи в капле воды постоянно вздрагивают под ударами миллионов невидимых движущихся молекул.
Средняя скорость движения молекулы кислорода при температуре таяния льда равняется примерно четыремстам двадцати метрам в секунду, а молекулы водорода — в четыре раза быстрее. В пятнадцати кубических сантиметрах воздуха каждую секунду происходят тысячи миллиардов столкновений между молекулами!
Тепло и температура — это не одно и то же. Тепловая энергия, которую содержит в себе тело, зависит от энергии движения его молекул и атомов. Количество тепла измеряется в калориях. Калория равняется количеству тепла, которое требуется для того, чтобы подогреть один грамм воды на один градус по Цельсию. А температура тела показывает, до какой степени, или «градуса», эта тепловая энергия его подогрела. Самая низкая возможная температура — 273 градуса ниже нуля по Цельсию. Ученые считают, что при такой температуре молекулы перестают двигаться, то есть находятся в состоянии покоя.