Основным механизмом контроля за процессом трансляции является
фосфорилирование факторов трансляции. Так, фактор инициации eIF2 при фосфорилировании теряет активность, а при дефосфорилировании - приобретает. В свою очередь процессы фосфорилирования-/дефосфорилирования катализируются протеинкиназами/протеинфосфатазами, активность которых контролируется циклическими нуклеотидами, гормонами и другими регуляторами.
Второй способ регуляции - дискриминация мРНК. Существуют «сильные» и «слабые» мРНК. Сильные мРНК имеют большее сродство к инициирующей рибосоме и факторам инициации, поэтому их трансляция идет эффективнее.
К третьему принадлежит блокировка трансляции белками-репрессорами, в качестве которых часто выступает сам продукт трансляции. Таким образом избыточные количества синтезированного белка тормозят свое же образование.
фосфорилирование факторов трансляции. Так, фактор инициации eIF2 при фосфорилировании теряет активность, а при дефосфорилировании - приобретает. В свою очередь процессы фосфорилирования-/дефосфорилирования катализируются протеинкиназами/протеинфосфатазами, активность которых контролируется циклическими нуклеотидами, гормонами и другими регуляторами.
Второй способ регуляции - дискриминация мРНК. Существуют «сильные» и «слабые» мРНК. Сильные мРНК имеют большее сродство к инициирующей рибосоме и факторам инициации, поэтому их трансляция идет эффективнее.
К третьему принадлежит блокировка трансляции белками-репрессорами, в качестве которых часто выступает сам продукт трансляции. Таким образом избыточные количества синтезированного белка тормозят свое же образование.
1. Сохранение наследственной информации. Количество ДНК в соматических и половых клетках является постоянной величиной для данного вида организмов и воспроизводится в поколениях. ДНК содержит не только информацию о структуре всех белков и РНК в организме, но и порядок реализации этой информации в процессе онтогенеза и при различных функциональных состояниях. Все соматические клетки организма несмотря на сильные структурные и функциональные отличия между клетками, содержат в своих ДНК одну и ту же генетическую информацию.
2. Передача наследственной информации потомкам. Удвоение молекул ДНК при репликации и передача потомкам копий материнской ДНК является основой сохранения основных биологических признаков вида. При репликации материнская ДНК служит матрицей для синтеза ДНК дочерней клетки.
3. Реализация генетической информации. Эта функция реализуется за счет передачи закодированной в ДНК информации на молекулы белков, которые выполняют необходимые для жизни клетки операции. В этом случае ДНК является матрицей для синтеза РНК, а РНК – матрицей при синтезе белков (центральная догма молекулярной биологии).
2. Передача наследственной информации потомкам. Удвоение молекул ДНК при репликации и передача потомкам копий материнской ДНК является основой сохранения основных биологических признаков вида. При репликации материнская ДНК служит матрицей для синтеза ДНК дочерней клетки.
3. Реализация генетической информации. Эта функция реализуется за счет передачи закодированной в ДНК информации на молекулы белков, которые выполняют необходимые для жизни клетки операции. В этом случае ДНК является матрицей для синтеза РНК, а РНК – матрицей при синтезе белков (центральная догма молекулярной биологии).
Регуляция экспрессии генов может происходить и после синтеза молекулы мРНК, в частности во время дозревания (процессинга) первичных мРНК. Основные способы такой регуляции – альтернативный сплайсинг, РНК-интерферренция и изменения стабильности РНК (изменения скорости деградации РНК).
Альтернативный сплайсинг – это вырезание экзонов и их объединение в разных комбинациях. Поэтому одна пре-РНК может давать несколько разных мРНК. Один ген может кодировать не один белок, а несколько. Например, во всех клетках есть ген кальцитонина, но в щитовидной железе он экспрессируется в виде гормона кальцитонина, в гипофизе - нейропептида CGRP. Альтернативный сплайсинг широко представлен в геноме человека, поэтому протеом человека содержит намного большее количество белков, чем протеомы других организмов.
Альтернативный сплайсинг – это вырезание экзонов и их объединение в разных комбинациях. Поэтому одна пре-РНК может давать несколько разных мРНК. Один ген может кодировать не один белок, а несколько. Например, во всех клетках есть ген кальцитонина, но в щитовидной железе он экспрессируется в виде гормона кальцитонина, в гипофизе - нейропептида CGRP. Альтернативный сплайсинг широко представлен в геноме человека, поэтому протеом человека содержит намного большее количество белков, чем протеомы других организмов.
Воздух как среда обитания для микроорганизмов менее благоприятен, чем почва и вода, так как в нем не содержится или содержится очень мало питательных веществ, необходимых для размножения микроорганизмов. Кроме того, на них сильнее действуют такие неблагоприятные факторы, как высушивание и ультрафиолетовые лучи солнечного света. Тем не менее, попадая в воздух, многие микроорганизмы могут сохраняться в нем более или менее длительное время. Воздух особенно загрязнен вблизи земной поверхности, а по мере подъема вверх он становится все более чистым. На степень загрязнения воздуха микробами влияют и климатогеографические условия. Больше всего микробов в атмосфере содержится летом, меньше всего зимой. Главным источником загрязнения воздуха является почва, в меньшей степени вода.
В воздухе в естественных условиях обнаруживаются сотни видов сапрофитных микроорганизмов, представленных кокками (в том числе сарцинами), споровыми бактериями и грибами, отличающимися большой устойчивостью к высушиванию и другим неблагоприятным условиям внешней среды, например действию солнечных лучей. Нужно различать воздух открытых пространств (он относительно чище, так как сказывается действие солнечных лучей, высушивания и других факторов) и воздух закрытых помещений. В последних факторы самоочищения действуют слабее, поэтому и загрязненность может быть значительно больше. В воздухе закрытых помещений, особенно если они плохо проветриваются, накапливается микрофлора, выделяемая через дыхательные пути человека.
В воздухе в естественных условиях обнаруживаются сотни видов сапрофитных микроорганизмов, представленных кокками (в том числе сарцинами), споровыми бактериями и грибами, отличающимися большой устойчивостью к высушиванию и другим неблагоприятным условиям внешней среды, например действию солнечных лучей. Нужно различать воздух открытых пространств (он относительно чище, так как сказывается действие солнечных лучей, высушивания и других факторов) и воздух закрытых помещений. В последних факторы самоочищения действуют слабее, поэтому и загрязненность может быть значительно больше. В воздухе закрытых помещений, особенно если они плохо проветриваются, накапливается микрофлора, выделяемая через дыхательные пути человека.
Гены эукариот имеют более сложное строение, чем гены прокариот.
Регуляторная часть гена эукариот включает цис-регуляторные элементы (промотор, который граничит с открытой рамкой считывания гена) и транс- регуляторные элементы (энхансеры, сайленсеры, аттенюаторы и инсуляторы) которые расположены далеко от кодирующей части гена (на расстоянии миллионов пар нуклеотидов). Белки, которые связываются с цис- и транс-регуляторными элементами ДНК, называются транс-действующими факторами (транс-действие означает взаимодействие между разными молекулами, а цис-действие - внутримолекулярные взаимодействия).
а) У эукариот промоторы отличаются специфичностью к разным РНК- полимеразам (у прокариот только одна РНК-полимераза). Это означает, что с промоторами генов, кодирующих транспортные РНК, связывается лишь РНК- полимераза ІІІ, а с промоторами генов, которые кодируют мРНК – лишь РНК- полимераза ІІ. Детально промоторы описаны ранее.
Вода, как и почва, является естественной средой обитания для многих видов микроорганизмов всех царств жизни. Разнообразные микроорганизмы обитают как в воде открытых водоемов, так и в грунтовых водах: палочки, кокки, вибрионы, спириллы, спирохеты, различные фотосинтезируюшие бактерии, грибы, простейшие, вирусы и плазмиды. Многие виды галофильных бактерий обитают в морских водах. Численность микроорганизмов в воде определяется главным образом содержанием в ней органических веществ, которые под влиянием микроорганизмов подвергаются совершенно таким же превращениям, как и в почве. В 1 мл воды количество микробов может превышать несколько миллионов.
Грунтовые подземные воды чище, так как, просачиваясь через почву, вода подвергается своеобразной фильтрации, в результате которой большинство микробов задерживается в фильтрующем слое. Численность микроорганизмов в воде открытых водоемов подвержена колебаниям и зависит от климатических условий, времени года, а главным образом от степени загрязнения рек, озер и морей сточными и канализационными водами и отходами промышленных, агропромышленных и других предприятий. В реки, озера, моря из прибрежных городов и других населенных пунктов выбрасывается такое количество сточных вод, несущих мириады микробов и содержащих огромное количество органических веществ, что вода не успевает самоочищаться. В результате возникла и сохраняется серьезная глобальная экологическая проблема.
По степени микробного загрязнения различают три категории воды (или зоны водоема):
Грунтовые подземные воды чище, так как, просачиваясь через почву, вода подвергается своеобразной фильтрации, в результате которой большинство микробов задерживается в фильтрующем слое. Численность микроорганизмов в воде открытых водоемов подвержена колебаниям и зависит от климатических условий, времени года, а главным образом от степени загрязнения рек, озер и морей сточными и канализационными водами и отходами промышленных, агропромышленных и других предприятий. В реки, озера, моря из прибрежных городов и других населенных пунктов выбрасывается такое количество сточных вод, несущих мириады микробов и содержащих огромное количество органических веществ, что вода не успевает самоочищаться. В результате возникла и сохраняется серьезная глобальная экологическая проблема.
По степени микробного загрязнения различают три категории воды (или зоны водоема):
Еукариоты имеют более сложную организацию, чем прокариоты, Например, в организме человека насчитывается более 200 разных типов клеток и 100 тысяч белков. Контроль экспрессии генов у эукариот включает не только механизмы, существующие у эукариот, но и механизмы, присущие только эукариотам.
Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- на уровне структурной организации генома (претранскрипционный контроль)
- на уровне транскрипции. Существует транскрипционная и посттранскрипционная регуляция. Регулироваться может сам процесс транскрипции, дозревание мРНК (процессинг), транспорт и деградация мРНК.
- на уровне трансляции – через фосфорилирование-/дефосфорилирование белковых факторов трансляции.
- на пострансляционном уровне – через регуляцию процессов формирования белковой молекулы, ее транспорта, активности и деградации.
Претранскрипционный контроль экспрессии генов у эукариот.
Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- на уровне структурной организации генома (претранскрипционный контроль)
- на уровне транскрипции. Существует транскрипционная и посттранскрипционная регуляция. Регулироваться может сам процесс транскрипции, дозревание мРНК (процессинг), транспорт и деградация мРНК.
- на уровне трансляции – через фосфорилирование-/дефосфорилирование белковых факторов трансляции.
- на пострансляционном уровне – через регуляцию процессов формирования белковой молекулы, ее транспорта, активности и деградации.
Претранскрипционный контроль экспрессии генов у эукариот.
Биологическое загрязнение почв. Биологическое загрязнение почв чужеродными микроорганизмами происходит в результате попадания в почву бытовых и сельскохозяйственных отходов и отбросов, а также за счет аэрозолей микробиологических производств. С бытовыми отбросами в почву могут попадать потенциально опасные микроорганизмы патогенные и токсикогенные, способные вызывать кишечные инфекции и пищевые отравления у человека, эпидемические заболевания у животных, токсикозы растений.
В санитарно-эпидемиологических почвенных исследованиях определяют содержание в почвах бактерий группы кишечной палочки (E.coli) и патогенных клостридий и бацилл: возбудителей столбняка (Сl. tetani), сибирской язвы (Вас. апthrаcis), газовой гангрены (Сl. реrfringens) и др. Бактериальные энтомопатогенные препараты (энтомобактерин, дендробациллин, боверин, мускардин) содержат споры бацилл (Вас. Сеrеиs, Вас. thuringiensis), которые в течение многих лет сохраняются и размножаются в почве. При применении этих препаратов методами аэрораспыления происходит массовое обсеменение растительности и почвы спорами этих бактерий, что может привести к нарушению природного равновесия в микробных сообществах.
Почва способна к самоочищению от несвойственных ей микроорганизмов. Механизмы, лежащие в основе самоочищения почв, пока остаются непознанными. Они могут быть разной природы. В первую очередь это связано с отсутствием в почвенной среде условий, необходимых для развития попадающих извне микроорганизмов, а также неблагоприятного действия физических и химических факторов (кислотности, низких значений температур, высушивания, солнечной радиации и т. д.).
В санитарно-эпидемиологических почвенных исследованиях определяют содержание в почвах бактерий группы кишечной палочки (E.coli) и патогенных клостридий и бацилл: возбудителей столбняка (Сl. tetani), сибирской язвы (Вас. апthrаcis), газовой гангрены (Сl. реrfringens) и др. Бактериальные энтомопатогенные препараты (энтомобактерин, дендробациллин, боверин, мускардин) содержат споры бацилл (Вас. Сеrеиs, Вас. thuringiensis), которые в течение многих лет сохраняются и размножаются в почве. При применении этих препаратов методами аэрораспыления происходит массовое обсеменение растительности и почвы спорами этих бактерий, что может привести к нарушению природного равновесия в микробных сообществах.
Почва способна к самоочищению от несвойственных ей микроорганизмов. Механизмы, лежащие в основе самоочищения почв, пока остаются непознанными. Они могут быть разной природы. В первую очередь это связано с отсутствием в почвенной среде условий, необходимых для развития попадающих извне микроорганизмов, а также неблагоприятного действия физических и химических факторов (кислотности, низких значений температур, высушивания, солнечной радиации и т. д.).
Современная теория регуляции экспрессии генов у прокариот была предложена французскими исследователями Ф.Жакобом и Ж.Моно, которые исследовали биосинтез у E.сoli ферментов, метаболизирующих лактозу (β- галактозидазы, β-галактозидпермеазы и β-галактозидтрансацетилазы). Обнаружено, что при культивировании E.сoli на глюкозе содержание ферментов, метаболизирующих лактозу, минимально, но при замене глюкозы на лактозу происходит взрывоподобное усиление синтеза ферментов, разщепляющих лактозу на глюкозу и галактозу, и обеспечивают последующий метаболизм последних.
У бактерий существуют ферменты 3-х типов: а) конститутивные, которые присутствуют в клетках в постоянных количествах, независимо от их метаболического состояния; б) индуцибельные – их количество в клетках при обычных условиях незначительно, но может увеличиваться в сотни и тысячи раз, если в культуральную среду добавлять субстраты этих ферментов; в) репрессабельные – ферменты, синтез которых в клетке прекращается при добавлении в среду конечных продуктов тех метаболических путей, где функционируют эти ферменты. На основании этих фактов и была сформулирована теория оперона.
У бактерий существуют ферменты 3-х типов: а) конститутивные, которые присутствуют в клетках в постоянных количествах, независимо от их метаболического состояния; б) индуцибельные – их количество в клетках при обычных условиях незначительно, но может увеличиваться в сотни и тысячи раз, если в культуральную среду добавлять субстраты этих ферментов; в) репрессабельные – ферменты, синтез которых в клетке прекращается при добавлении в среду конечных продуктов тех метаболических путей, где функционируют эти ферменты. На основании этих фактов и была сформулирована теория оперона.
Химическое загрязнение почв. При оценке токсического воздейст- вия тяжелых металлов или других веществ на ценотическом уровне необходимо оценить не только структурные, но и функциональные характеристики микробных ценозов. Наиболее обобщенной характеристикой функционирования микробного ценоза является интенсивность выделения CO2. Другой, более специализированной функцией микробного ценоза является активность азотфиксации. Иерархическая система биоиндикации почв может быть использована при определении степени токсического эффекта загрязнителей, в мониторинговых исследованиях, а также при разработке мероприятий по оздоровлению загрязненных почв.
Из анализа литературы по биоиндикации почв можно сделать вывод, что большинство исследований проводится на ценотическом уровне, то есть рассматривается преобразование почвообитающих микроорганизмов и отдельных биохимических показателей в условиях воздействия на почвенный покров набора антропогенных факторов. Уровень структурных изменений сообщества почвенных водорослей, обитающих на территории г. Москвы, зависит от характера урбанофитоценоза. В почвах городских дворов и загрязненных участков вокруг промышленных предприятий наблюдается низкое видовое разнообразие, спад активности зеленых водорослей, практическое отсутствие желто-зеленых и доминирование сине-зеленых (цианобактерий) форм почвенных водорослей. Загрязнение почв в экстремальных зонах, расположенных в непосредственной близости от предприятий цветной металлургии, действует необратимо по своей губительности на почвенные инфузории. В то же время отдельные группы раковинных амеб и почвенных водорослей одни из немногих, которые склонны к выживанию в экстремальных условиях и вносят свою лепту в рекультивацию загрязненных земель.
Из анализа литературы по биоиндикации почв можно сделать вывод, что большинство исследований проводится на ценотическом уровне, то есть рассматривается преобразование почвообитающих микроорганизмов и отдельных биохимических показателей в условиях воздействия на почвенный покров набора антропогенных факторов. Уровень структурных изменений сообщества почвенных водорослей, обитающих на территории г. Москвы, зависит от характера урбанофитоценоза. В почвах городских дворов и загрязненных участков вокруг промышленных предприятий наблюдается низкое видовое разнообразие, спад активности зеленых водорослей, практическое отсутствие желто-зеленых и доминирование сине-зеленых (цианобактерий) форм почвенных водорослей. Загрязнение почв в экстремальных зонах, расположенных в непосредственной близости от предприятий цветной металлургии, действует необратимо по своей губительности на почвенные инфузории. В то же время отдельные группы раковинных амеб и почвенных водорослей одни из немногих, которые склонны к выживанию в экстремальных условиях и вносят свою лепту в рекультивацию загрязненных земель.
Посттрансляционные изменения белков включают формирование высших структур белка после синтеза полипептидной цепи в рибосомах. Описаны более сотни различных вариантов посттрансляцийних изменений в белках. К наиболее известным принадлежат:
1.Частичный протеолиз. Многие белки первично синтезируются в виде неактивных предшественников, из которых потом путем ограниченного протеолиза образуются отдельные функционально активные белки. Так, большинство протеолитических ферментов пищеварительного тракта образуется в виде неактивных проферментов (пепсиногена, триписиногена, прокарбоксипептидазы и т.д.), и активируются после отщепления пептидов, блокирующих их активный центр. Белковые гормоны также синтезируются в виде неактивных предшественников. Путем протеолиза из препроинсулина образуется инсулин, проопиомеланокортина - пептидные гормоны гипофиза и т.д.
Секреторные белки, синтезированные на рибосомах, при прохождении через мембраны эндоплазматического ретикулума и аппарата Гольджи поддаются ограниченному протеолизу. Примером является отщепление N-концевых формилметионина и метионина от синтезированной полипептидной цепи.
1.Частичный протеолиз. Многие белки первично синтезируются в виде неактивных предшественников, из которых потом путем ограниченного протеолиза образуются отдельные функционально активные белки. Так, большинство протеолитических ферментов пищеварительного тракта образуется в виде неактивных проферментов (пепсиногена, триписиногена, прокарбоксипептидазы и т.д.), и активируются после отщепления пептидов, блокирующих их активный центр. Белковые гормоны также синтезируются в виде неактивных предшественников. Путем протеолиза из препроинсулина образуется инсулин, проопиомеланокортина - пептидные гормоны гипофиза и т.д.
Секреторные белки, синтезированные на рибосомах, при прохождении через мембраны эндоплазматического ретикулума и аппарата Гольджи поддаются ограниченному протеолизу. Примером является отщепление N-концевых формилметионина и метионина от синтезированной полипептидной цепи.
Показатели, характеризующие состояние почвенной биоты и биологическую активность почв, можно использовать для контроля за теми изменениями в почвах, которые возникают при включении в них разного рода посторонних веществ, чаще всего антропогенного происхождения. Различают следующие типы и характер загрязнения почв:
1) химическое загрязнение пестицидами, тяжелыми металлами, ра дионуклидами, нефтяными углеводородами, минеральными удобрениями;
2) биологическое загрязнение объектами микробиологического про изводства белка и белково-витаминных концентратов (БВК), энтомопатогенными бактериями, которые используются для борьбы с вредителями леса.
Общепризнанная система биоиндикации загрязнений почв отсутствует, хотя известно, что микроорганизмы чутко реагируют на изменения почвенных условий или на присутствие в ней загрязняющих веществ. В связи с этим, исходя из положения об иерархическом строении биологических систем, предложен новый подход к биоиндикации почвы, при котором биоиндикационные показатели отражают влияние загрязнителей на различных уровнях: доклеточном, клеточном, популяционном и ценотическом [14].
1) химическое загрязнение пестицидами, тяжелыми металлами, ра дионуклидами, нефтяными углеводородами, минеральными удобрениями;
2) биологическое загрязнение объектами микробиологического про изводства белка и белково-витаминных концентратов (БВК), энтомопатогенными бактериями, которые используются для борьбы с вредителями леса.
Общепризнанная система биоиндикации загрязнений почв отсутствует, хотя известно, что микроорганизмы чутко реагируют на изменения почвенных условий или на присутствие в ней загрязняющих веществ. В связи с этим, исходя из положения об иерархическом строении биологических систем, предложен новый подход к биоиндикации почвы, при котором биоиндикационные показатели отражают влияние загрязнителей на различных уровнях: доклеточном, клеточном, популяционном и ценотическом [14].