Собственно трансляция происходит в рибосомах и включает три стадии:
1. Инициация: образование инициирующего комплекса, который включает метионин-тРНКи (инициирующая), мРНК и рибосомальные белки. Комплекс состоит из 40S и 60S субъединиц, объединенных в 80S-рибосому. Целостная рибосома имеет аминоацильный (А-сайт) и пептидильный участок (Р-сайт). Первый отвечает за связывание аминоацил-тРНК, а второй – за связывание растущей полипептидной цепи.
В состав инициирующего комплекса входит мРНК, которая на 5’-конце имеет 7-метилгуанозиновый «кэп». Начиная с кэпа, рибосома движется по мРНК и сканирует один кодон за другим, пока не наткнется на инициирующий (стартовый) кодон AUG. мРНК ориентируется таким образом, чтобы напротив пептидильного сайта рибосомы размещался инициирующий кодон AUG (кодирует метионин). Инициирующая метиониновая тРНК (мет-тРНКи) поставляет в рибосому первую аминокислоту – метионин, который становится N-концевой аминокислотой для большинства эукариотических белков (у прокариот это формилметионин). Для формирования инициирующего комплекса необходимо присутствие фактора eIF2 и более десяти других факторов инициации трансляции (eIF1, eIF3, eIF4, eIF6 и других). Роль факторов инициации различна. Так, фактор eIF3 препятствует объединению субъединиц рибосом в отсутствии мРНК; фактор eIF2 распознает инициирующую мет-тРНКи и поставляет энергию для инициации, расщепляя ГТФ; фактор eIF4A раскручивает мРНК и позволяет рибосоме двигаться по ней; фактор eIF4E распознает кэп. Благодаря взаимодействию между рРНК и мРНК последняя правильно фиксируется на рибосомных частицах, что способствует инициации.
2. Элонгация. Суть элонгации заключается в возникновении пептидных связей между остатками аминокислот с образованием полипептидной цепи, в которой последовательность аминокислот отвечает последовательности кодонов в мРНК. Элонгации нуждается в энергии ГТФ и факторах элонгации – EF1 и EF2.
Элонгация начинается после того, как мет-тРНКи займет пептидильний центр рибосомы. В свободный аминоацильний сайт рибосомы могут поступать любые аминоацил-тРНК, но остается в нем лишь та, антикодон которой комплементарен кодону на мРНК. В результате метионил-тРНК и вторая аминоацил-тРНК сближаются между собой, а пептидилтрансфераза (точнее пептидилтрансферазный центр), катализирует образование пептидной связи между ними. Заметим, что пептидилтрансферазный центр есть рибозимом и образуется как рибосомальной РНК (28S рРНК), так и белками большой субъединицы рибосом. После образования пептидной связи со второй аминокислотой высвобождается мет тРНКи и происходит транслокация (перемещение) образованного дипептида (дипептидил-тРНК) из аминоацильного сайта в пептидильный. Процессу нужна энергия ГТФ и фактор элонгации ЕF2. В результате транслокации освобождается аминоацильний сайт, в который поступает новая аа-тРНК, антикодон которой комплементарен очередному кодону на мРНК, а пептидилтрансфераза наращивает цепь белка еще на одну аминокислоту по такой схеме:
Пептидил-тРНК(1)+ аминоацил-тРНК(2) >тРНК(1)+ пептидиламиноацил- тРНК(2).
Этот конвеер работает непрерывно до того момента, пока на мРНК не появятся терминирующие кодоны (UAA, UGA, UAG).
3.Терминация трансляции. Появление терминирующих кодонов на мРНК
способствует завершению трансляции, поскольку этим кодонам не отвечает ни одна из аа-тРНК. С этими кодонами связываются факторы терминации (eRF1 и eRF2), которые стимулируют гидролазную активность пептидильного центра. От новообразованного пептида отщепляется тРНК, и он отделяется от пептидильного центра. Рибосома диссоциирует на две субъединицы, а мРНК гидролизуется на свободные мононуклеотиды.
Полисомы (полирибосомы). В трансляции мРНК могут принимать участие несколько рибосом. Как только первая рибосома покидает инициирующий кодон на мРНК, он становится доступным для другой рибосомы и т.д. Поэтому на одну цепь мРНК может быть нанизано 5- 6 рибосом. Конвеерный характер трансляции существенно повышает скорость синтеза белка.
Ингибиторы трансляции у прокариот: стрептомицин блокирует стадию инициации; тетрациклин - связывание аминоацил-тРНК с рибосомами, хлорамфеникол - пептидилтрансферазную активность, эритромицин - процесс транслокации. Циклогексимид тормозит пептидилтрансферазную активность у эукариот, а пуромицин конкурирует с аминоацил-тРНК за аминоацильний сайт рибосомы. Ингибитором трансляции является дифтерийный токсин. А-фрагмент токсина имеет активность АДФ-рибозилтрансферазы и переносит АДФ-рибозу с НАД на фактор элонгации eEF2, инактивируя его. Интерфероны – белки, которые продуцируются лимфоцитами при заражении организма вирусами, активируют протеинкиназы, фосфорилирующие фактор инициации eIF2 и инактивируют его. Блокируется синтез вирусных и клеточных белков, наступает гибель инфицированных клеток, чем предупреждается распространение вируса.
4 Нематричный синтез полипептидов. В клетке может происходить синтез полипептидов и без участия мРНК и рибосом. Он осуществляется двумя путями. Первый: синтез из аминокислот при участии мультиферментных комплексов. Так синтезируется глутатион, пептидная часть пептидогликанов бактериальной стенки, антибиотик грамицидин, рилизинг-факторы гипоталамуса и другие небольшие пептиды. Второй: нарезание пептидов из более длинной полипептидной цепи специальными протеазами. Так из белка-предшественника проопиомеланокортина синтезируются липотропины, меланоцитстимулирующий гормон, кортикотропин, эндорфины и энкефалины.
1. Инициация: образование инициирующего комплекса, который включает метионин-тРНКи (инициирующая), мРНК и рибосомальные белки. Комплекс состоит из 40S и 60S субъединиц, объединенных в 80S-рибосому. Целостная рибосома имеет аминоацильный (А-сайт) и пептидильный участок (Р-сайт). Первый отвечает за связывание аминоацил-тРНК, а второй – за связывание растущей полипептидной цепи.
В состав инициирующего комплекса входит мРНК, которая на 5’-конце имеет 7-метилгуанозиновый «кэп». Начиная с кэпа, рибосома движется по мРНК и сканирует один кодон за другим, пока не наткнется на инициирующий (стартовый) кодон AUG. мРНК ориентируется таким образом, чтобы напротив пептидильного сайта рибосомы размещался инициирующий кодон AUG (кодирует метионин). Инициирующая метиониновая тРНК (мет-тРНКи) поставляет в рибосому первую аминокислоту – метионин, который становится N-концевой аминокислотой для большинства эукариотических белков (у прокариот это формилметионин). Для формирования инициирующего комплекса необходимо присутствие фактора eIF2 и более десяти других факторов инициации трансляции (eIF1, eIF3, eIF4, eIF6 и других). Роль факторов инициации различна. Так, фактор eIF3 препятствует объединению субъединиц рибосом в отсутствии мРНК; фактор eIF2 распознает инициирующую мет-тРНКи и поставляет энергию для инициации, расщепляя ГТФ; фактор eIF4A раскручивает мРНК и позволяет рибосоме двигаться по ней; фактор eIF4E распознает кэп. Благодаря взаимодействию между рРНК и мРНК последняя правильно фиксируется на рибосомных частицах, что способствует инициации.
2. Элонгация. Суть элонгации заключается в возникновении пептидных связей между остатками аминокислот с образованием полипептидной цепи, в которой последовательность аминокислот отвечает последовательности кодонов в мРНК. Элонгации нуждается в энергии ГТФ и факторах элонгации – EF1 и EF2.
Элонгация начинается после того, как мет-тРНКи займет пептидильний центр рибосомы. В свободный аминоацильний сайт рибосомы могут поступать любые аминоацил-тРНК, но остается в нем лишь та, антикодон которой комплементарен кодону на мРНК. В результате метионил-тРНК и вторая аминоацил-тРНК сближаются между собой, а пептидилтрансфераза (точнее пептидилтрансферазный центр), катализирует образование пептидной связи между ними. Заметим, что пептидилтрансферазный центр есть рибозимом и образуется как рибосомальной РНК (28S рРНК), так и белками большой субъединицы рибосом. После образования пептидной связи со второй аминокислотой высвобождается мет тРНКи и происходит транслокация (перемещение) образованного дипептида (дипептидил-тРНК) из аминоацильного сайта в пептидильный. Процессу нужна энергия ГТФ и фактор элонгации ЕF2. В результате транслокации освобождается аминоацильний сайт, в который поступает новая аа-тРНК, антикодон которой комплементарен очередному кодону на мРНК, а пептидилтрансфераза наращивает цепь белка еще на одну аминокислоту по такой схеме:
Пептидил-тРНК(1)+ аминоацил-тРНК(2) >тРНК(1)+ пептидиламиноацил- тРНК(2).
Этот конвеер работает непрерывно до того момента, пока на мРНК не появятся терминирующие кодоны (UAA, UGA, UAG).
3.Терминация трансляции. Появление терминирующих кодонов на мРНК
способствует завершению трансляции, поскольку этим кодонам не отвечает ни одна из аа-тРНК. С этими кодонами связываются факторы терминации (eRF1 и eRF2), которые стимулируют гидролазную активность пептидильного центра. От новообразованного пептида отщепляется тРНК, и он отделяется от пептидильного центра. Рибосома диссоциирует на две субъединицы, а мРНК гидролизуется на свободные мононуклеотиды.
Полисомы (полирибосомы). В трансляции мРНК могут принимать участие несколько рибосом. Как только первая рибосома покидает инициирующий кодон на мРНК, он становится доступным для другой рибосомы и т.д. Поэтому на одну цепь мРНК может быть нанизано 5- 6 рибосом. Конвеерный характер трансляции существенно повышает скорость синтеза белка.
Ингибиторы трансляции у прокариот: стрептомицин блокирует стадию инициации; тетрациклин - связывание аминоацил-тРНК с рибосомами, хлорамфеникол - пептидилтрансферазную активность, эритромицин - процесс транслокации. Циклогексимид тормозит пептидилтрансферазную активность у эукариот, а пуромицин конкурирует с аминоацил-тРНК за аминоацильний сайт рибосомы. Ингибитором трансляции является дифтерийный токсин. А-фрагмент токсина имеет активность АДФ-рибозилтрансферазы и переносит АДФ-рибозу с НАД на фактор элонгации eEF2, инактивируя его. Интерфероны – белки, которые продуцируются лимфоцитами при заражении организма вирусами, активируют протеинкиназы, фосфорилирующие фактор инициации eIF2 и инактивируют его. Блокируется синтез вирусных и клеточных белков, наступает гибель инфицированных клеток, чем предупреждается распространение вируса.
4 Нематричный синтез полипептидов. В клетке может происходить синтез полипептидов и без участия мРНК и рибосом. Он осуществляется двумя путями. Первый: синтез из аминокислот при участии мультиферментных комплексов. Так синтезируется глутатион, пептидная часть пептидогликанов бактериальной стенки, антибиотик грамицидин, рилизинг-факторы гипоталамуса и другие небольшие пептиды. Второй: нарезание пептидов из более длинной полипептидной цепи специальными протеазами. Так из белка-предшественника проопиомеланокортина синтезируются липотропины, меланоцитстимулирующий гормон, кортикотропин, эндорфины и энкефалины.
Авторское право на материал
Копирование материалов допускается только с указанием активной ссылки на статью!
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Похожие статьи