В настоящее время изучение геномов не ограничивается только картированием генов, стало возможным изучать последовательность расположения нуклеотидов в составе любого гена. Решающим шагом на пути к решению этой проблемы явилось применение особых ферментов рестрикционных эндонуклеаз и разработка метода клонирования генов.
Рестрикционные эндонуклеазы (рестриктазы) ферменты, расщепляющие ДНК в специфических участках нуклеотидных последовательностей, которые они распознают. Эти ферменты обнаружены у многих бактерий. Они определяют и разрушают чужеродные молекулы ДНК, попадающие в клетку, в том числе при инфицировании их фагами или при трансформации. Таких ферментов обнаружено более 100, и каждый из них распознает в ДНК специфическую последовательность из 4 6 нуклеотидов. Каждая рестриктаза способна разрезать двойную спираль ДНК любой длины. При этом образуется серия фрагментов, называемых рестрикционными фрагментами. Сравнение размеров этих фрагментов, полученных при обработке бактериальных или плазмидных геномов (а также ДНК хромосом эукариот), позволяет создавать рестрикционные карты, в которых отмечается локализация каждого разреза участка относительно соседних участков других таких разрезов (рестрикций).
Существенно, что многие рестриктазы вносят разрывы в обе цепи ДНК со смещением на несколько нуклеотидов. Вследствие этого на конце нити одного фрагмента образуется участок, нуклеотидные последовательности которого оказываются комплементарными нуклеотидным последовательностям другой нити с другого конца фрагмента. Такие концевые последовательности, комплементарные друг другу, получили название липких концов. С их помощью образовавшиеся рестрикционные фрагменты будут вновь образовывать кольца в результате спаривания липких концов. Способность рестрикционных нуклеаз разрезать ДНК с образованием липких концов широко используется в технологии создания рекомбинантных ДНК, так как при помощи таких концов можно соединить два любых фрагмента ДНК, если они получены с помощью одной и той же рестриктазы и, следовательно, имеют комплементарные липкие концы. После замыкания последних путем образования комплементарных пар оснований образовавшееся кольцо из фрагментов разных ДНК можно сшить ковалентными фосфодиэфирными связями между противоположными концами каждой нити ДНК с помощью ДНК-лигазы. В этом заключается суть технологии получения рекомбинантных молекул ДНК.
Ранее всего был изучен геном бактериального вируса ФХ174. Е го ДНК состоит из 5400 нуклеотидов и содержит 9 генов. Вирус ФХ174 можно увидеть только с помощью электронного микроскопа, а запись его генетической информации, содержащейся в 9 генах, в виде линейной последовательности через буквы (А, Т, Г, Ц) занимает целую страницу текста. Запись в таком же виде информации, имеющейся в хромосоме животной клетки, составит книгу объемом более 500000 страниц!
Изучение генома человека началось в 80-х гг. XX в. В последующем была создана Международная организация по изучению генома человека HUGO (от англ. Human Genome Organization организация генома человека). Изучением генома человека занимаются ученые США, Японии, ряда стран Европы, России и др.
Основная задача определить последовательное расположение всех нуклеотидов (а их 3,5 • 109 пар) во всех 23 парах хромосом человека. Предстоит выяснить молекулярные основы наследственных болезней и определить пути их лечения рано или поздно генотерапия станет вполне реальной. Уже сейчас осуществляется ДНК-диагностика более 100 наследственных болезней. После открытия структуры ДНК, гена и расшифровки генетического кода осуществление программы «Геном человека» будет означать самую фундаментальную революцию в биологии и медицине.
Рестрикционные эндонуклеазы (рестриктазы) ферменты, расщепляющие ДНК в специфических участках нуклеотидных последовательностей, которые они распознают. Эти ферменты обнаружены у многих бактерий. Они определяют и разрушают чужеродные молекулы ДНК, попадающие в клетку, в том числе при инфицировании их фагами или при трансформации. Таких ферментов обнаружено более 100, и каждый из них распознает в ДНК специфическую последовательность из 4 6 нуклеотидов. Каждая рестриктаза способна разрезать двойную спираль ДНК любой длины. При этом образуется серия фрагментов, называемых рестрикционными фрагментами. Сравнение размеров этих фрагментов, полученных при обработке бактериальных или плазмидных геномов (а также ДНК хромосом эукариот), позволяет создавать рестрикционные карты, в которых отмечается локализация каждого разреза участка относительно соседних участков других таких разрезов (рестрикций).
Существенно, что многие рестриктазы вносят разрывы в обе цепи ДНК со смещением на несколько нуклеотидов. Вследствие этого на конце нити одного фрагмента образуется участок, нуклеотидные последовательности которого оказываются комплементарными нуклеотидным последовательностям другой нити с другого конца фрагмента. Такие концевые последовательности, комплементарные друг другу, получили название липких концов. С их помощью образовавшиеся рестрикционные фрагменты будут вновь образовывать кольца в результате спаривания липких концов. Способность рестрикционных нуклеаз разрезать ДНК с образованием липких концов широко используется в технологии создания рекомбинантных ДНК, так как при помощи таких концов можно соединить два любых фрагмента ДНК, если они получены с помощью одной и той же рестриктазы и, следовательно, имеют комплементарные липкие концы. После замыкания последних путем образования комплементарных пар оснований образовавшееся кольцо из фрагментов разных ДНК можно сшить ковалентными фосфодиэфирными связями между противоположными концами каждой нити ДНК с помощью ДНК-лигазы. В этом заключается суть технологии получения рекомбинантных молекул ДНК.
Ранее всего был изучен геном бактериального вируса ФХ174. Е го ДНК состоит из 5400 нуклеотидов и содержит 9 генов. Вирус ФХ174 можно увидеть только с помощью электронного микроскопа, а запись его генетической информации, содержащейся в 9 генах, в виде линейной последовательности через буквы (А, Т, Г, Ц) занимает целую страницу текста. Запись в таком же виде информации, имеющейся в хромосоме животной клетки, составит книгу объемом более 500000 страниц!
Изучение генома человека началось в 80-х гг. XX в. В последующем была создана Международная организация по изучению генома человека HUGO (от англ. Human Genome Organization организация генома человека). Изучением генома человека занимаются ученые США, Японии, ряда стран Европы, России и др.
Основная задача определить последовательное расположение всех нуклеотидов (а их 3,5 • 109 пар) во всех 23 парах хромосом человека. Предстоит выяснить молекулярные основы наследственных болезней и определить пути их лечения рано или поздно генотерапия станет вполне реальной. Уже сейчас осуществляется ДНК-диагностика более 100 наследственных болезней. После открытия структуры ДНК, гена и расшифровки генетического кода осуществление программы «Геном человека» будет означать самую фундаментальную революцию в биологии и медицине.
Авторское право на материал
Копирование материалов допускается только с указанием активной ссылки на статью!
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Похожие статьи