Помимо основного механизма передачи генов по наследству (по вертикали), у бактерий существуют следующие формы обмена генетическим материалом по горизонтали, то есть между отдельными особями в популяции клеток: трансформация, трансфекция., трансдукция, конъюгация.
Трансформация перенос генетического материала, заключающийся в том, что бактерия-реципиент захватывает (поглощает) из внешней среды фрагменты чужеродной ДНК. Трансформация может быть спонтанной или индуцированной. Индуцированная (искусственно получаемая) трансформация происходит при добавлении к культуре бактерий очищенной ДНК, полученной из культур тех бактерий, генетические признаки которых стремятся передать исследуемой культуре. Спонтанная трансформация происходит в естественных условиях и проявляется в возникновении рекомбинантов при смешивании генетически различающихся клеток. Она протекает за счет ДНК, попадающей в окружающую среду вследствие лизиса клеток или в результате ее активного выделения жизнеспособными клетками-донорами.
В процессе трансформации происходят значительные изменения поверхностных слоев клетки, которые способствуют поглощению ДНК. Аутолитические ферменты клетки растворяют клеточную стенку в тех участках, где происходит ее синтез. При этом мезосомы через образовавшиеся отверстия соприкасаются с внешней средой, адсорбируют и втягивают внутрь клетки трансформирующую ДНК, где она и вступает в рекомбинацию с ДНК реципиента. В результате этого образуется мерозигота. Клетка делится, и ее потомки наследуют признаки, полученные от донора и реципиента. Однако в других случаях поглощенные фрагменты ДНК разрушаются нуклеазами клетки-реципиента и трансформации не происходит.
Эффективность индуцируемой трансформации во многом зависит от физиологического состояния клеток-реципиентов, а также от размеров трансформирующей ДНК: высокомолекулярная ДНК поглощается труднее, чем менее крупные ее фрагменты. Способность к трансформации обнаружена у ряда родов бактерий, но, по-видимому, роль ее в обмене генетическим материалом среди бактерий в естественных условиях менее существенна, чем роль других механизмов, потому что у многих бактерий имеются особые системы рестрикции и модификации. Эти системы модифицируют свою ДНК (чаще всего путем ее метилирования) и разрушают ПО чужеродную ДНК, если она подобным образом не модифицирована. Эффективность метода генетической трансформации во много раз повышается в том случае, если смесь ДНК и трансформируемых клеток с помощью специального прибора подвергнуть обработке электрическим импульсом. Метод электротрансформации является универсальным, он применим к любым видам бактерий. С помощью этого метода осуществлена трансформация более 100 видов бактерий.
Трансфекция вариант трансформации бактериальных клеток, лишѐнных клеточной стенки, осуществляемый вирусной (фаговой) нуклеиновой кислотой. С помощью трансфекции удается вызвать у таких бактерий вирусную инфекцию. Трансфекцию можно осуществить и с другими (не бактериальными) клетками, если ввести в них чужеродную ДНК, способную рекомбинировать с ДНК этих клеток или способную воспроизводить вирионы, или самостоятельно реплицироваться.
Трансдукция перенос генетического материала от клетки-донора к клетке-реципиенту с помощью бактериофагов. Различают трансдукцию неспецифическую и специфическую. Неспецифическая трансдукция случайный перенос фрагментов ДНК от одной бактериальной клетки к другой. Специфическая трансдукция осуществляется только умеренными фагами, обладающими способностью включаться в строго определенные участки хромосомы бактериальной клетки и трансдуцировать определенные гены.
Конъюгация. Под конъюгацией понимают процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и реципиента. Этот процесс контролируется только конъюгативными плазмидами. Аппаратом переноса являются специальные донорные ворсинки (фимбрии, пили), с помощью которых устанавливается контакт между конъюгирующими клетками. Число донорных пилей у клетки невелико и, очевидно, соответствует числу копий конъюгативной плазмиды в клетке. Донорные ворсинки обнаруживают с помощью донорспецифических фагов, которые, адсорбируясь на них, проникают в клетку и вызывают ее лизис. Для каждой группы коньюгативных плазмид существуют свои донорспецифические фаги. Ворсинки выполняют следующие функции:
1) с их помощью устанавливается контакт между донорной и реципиентной клетками;
2) они облегчают перенос нити ДНК (она, вероятно, протаскивается через ворсинку);
3) стягивают спаривающиеся клетки, что повышает эффективность конъюгации.
Процесс конъюгации протекает через следующие стадии: установление контакта между донором и реципиентом, протаскивание нити ДНК от донора к реципиенту, достройка перенесенной нити ДНК комплементарной ей нитью в реципиентной клетке и рекомбинация между переданной хромосомой (ее фрагментами) и хромосомой клетки-реципиента, размножение мерозиготы и образование клеток, несущих признаки донора и реципиента.
Сущность поверхностного исключения заключается в том, что у бактерии синтезируются белки наружной мембраны, препятствующие (исключающие возможность) проникновению в клетку, несущую плазмиду, другой, но близкородственной ей плазмиды или подавляющие конъюгативную репликацию ее ДНК. Конъюгативная репликация переносимой нити хромосомной или плазмидной ДНК осуществляется также под контролем плазмидных генов. Классическим примером конъюгативной плазмиды является половой фактор, или F-плазмида (F от англ. fertility плодовитость). Главная функция этой плазмиды контроль конъюгации у бактерий кишечной группы. Эта плазмида может находиться как в автономном состоянии, так и интегрироваться в хромосому клетки. Находясь в автономном состоянии, она контролирует только собственный перенос, при котором клетка, лишенная F-плазмиды, превращается в Р+ -клетку (клетку, содержащую F-плазмиду). F-плазмида может интегрироваться в определенные участки бактериальной хромосомы, в этом случае она станет контролировать конъюгативный перенос хромосомы клетки. При этом одна из нитей ДНК хромосомы в месте интеграции F-плазмиды разрезается, и ее 5'-конец через донорный мостик начинает протягиваться в клетку-реципиент. Репликация ДНК в этом случае протекает по принципу «крутящегося» кольца. Таким образом, конъюгация начинается с установления контакта между донором и реципиентом с помощью донорной ворсинки. Последняя смыкается с рецептором клеточной мембраны клетки реципиента. Нередко такой контакт устанавливается не только между двумя клетками, а между многими клетками, образуя агрегаты спаривания. Поскольку донорный мостик является непрочным, процесс конъюгации может в любой момент прерваться. Поэтому при конъюгации может переноситься или часть хромосомы, или, реже, полная хромосома. 112
Трансформация перенос генетического материала, заключающийся в том, что бактерия-реципиент захватывает (поглощает) из внешней среды фрагменты чужеродной ДНК. Трансформация может быть спонтанной или индуцированной. Индуцированная (искусственно получаемая) трансформация происходит при добавлении к культуре бактерий очищенной ДНК, полученной из культур тех бактерий, генетические признаки которых стремятся передать исследуемой культуре. Спонтанная трансформация происходит в естественных условиях и проявляется в возникновении рекомбинантов при смешивании генетически различающихся клеток. Она протекает за счет ДНК, попадающей в окружающую среду вследствие лизиса клеток или в результате ее активного выделения жизнеспособными клетками-донорами.
В процессе трансформации происходят значительные изменения поверхностных слоев клетки, которые способствуют поглощению ДНК. Аутолитические ферменты клетки растворяют клеточную стенку в тех участках, где происходит ее синтез. При этом мезосомы через образовавшиеся отверстия соприкасаются с внешней средой, адсорбируют и втягивают внутрь клетки трансформирующую ДНК, где она и вступает в рекомбинацию с ДНК реципиента. В результате этого образуется мерозигота. Клетка делится, и ее потомки наследуют признаки, полученные от донора и реципиента. Однако в других случаях поглощенные фрагменты ДНК разрушаются нуклеазами клетки-реципиента и трансформации не происходит.
Эффективность индуцируемой трансформации во многом зависит от физиологического состояния клеток-реципиентов, а также от размеров трансформирующей ДНК: высокомолекулярная ДНК поглощается труднее, чем менее крупные ее фрагменты. Способность к трансформации обнаружена у ряда родов бактерий, но, по-видимому, роль ее в обмене генетическим материалом среди бактерий в естественных условиях менее существенна, чем роль других механизмов, потому что у многих бактерий имеются особые системы рестрикции и модификации. Эти системы модифицируют свою ДНК (чаще всего путем ее метилирования) и разрушают ПО чужеродную ДНК, если она подобным образом не модифицирована. Эффективность метода генетической трансформации во много раз повышается в том случае, если смесь ДНК и трансформируемых клеток с помощью специального прибора подвергнуть обработке электрическим импульсом. Метод электротрансформации является универсальным, он применим к любым видам бактерий. С помощью этого метода осуществлена трансформация более 100 видов бактерий.
Трансфекция вариант трансформации бактериальных клеток, лишѐнных клеточной стенки, осуществляемый вирусной (фаговой) нуклеиновой кислотой. С помощью трансфекции удается вызвать у таких бактерий вирусную инфекцию. Трансфекцию можно осуществить и с другими (не бактериальными) клетками, если ввести в них чужеродную ДНК, способную рекомбинировать с ДНК этих клеток или способную воспроизводить вирионы, или самостоятельно реплицироваться.
Трансдукция перенос генетического материала от клетки-донора к клетке-реципиенту с помощью бактериофагов. Различают трансдукцию неспецифическую и специфическую. Неспецифическая трансдукция случайный перенос фрагментов ДНК от одной бактериальной клетки к другой. Специфическая трансдукция осуществляется только умеренными фагами, обладающими способностью включаться в строго определенные участки хромосомы бактериальной клетки и трансдуцировать определенные гены.
Конъюгация. Под конъюгацией понимают процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и реципиента. Этот процесс контролируется только конъюгативными плазмидами. Аппаратом переноса являются специальные донорные ворсинки (фимбрии, пили), с помощью которых устанавливается контакт между конъюгирующими клетками. Число донорных пилей у клетки невелико и, очевидно, соответствует числу копий конъюгативной плазмиды в клетке. Донорные ворсинки обнаруживают с помощью донорспецифических фагов, которые, адсорбируясь на них, проникают в клетку и вызывают ее лизис. Для каждой группы коньюгативных плазмид существуют свои донорспецифические фаги. Ворсинки выполняют следующие функции:
1) с их помощью устанавливается контакт между донорной и реципиентной клетками;
2) они облегчают перенос нити ДНК (она, вероятно, протаскивается через ворсинку);
3) стягивают спаривающиеся клетки, что повышает эффективность конъюгации.
Процесс конъюгации протекает через следующие стадии: установление контакта между донором и реципиентом, протаскивание нити ДНК от донора к реципиенту, достройка перенесенной нити ДНК комплементарной ей нитью в реципиентной клетке и рекомбинация между переданной хромосомой (ее фрагментами) и хромосомой клетки-реципиента, размножение мерозиготы и образование клеток, несущих признаки донора и реципиента.
Сущность поверхностного исключения заключается в том, что у бактерии синтезируются белки наружной мембраны, препятствующие (исключающие возможность) проникновению в клетку, несущую плазмиду, другой, но близкородственной ей плазмиды или подавляющие конъюгативную репликацию ее ДНК. Конъюгативная репликация переносимой нити хромосомной или плазмидной ДНК осуществляется также под контролем плазмидных генов. Классическим примером конъюгативной плазмиды является половой фактор, или F-плазмида (F от англ. fertility плодовитость). Главная функция этой плазмиды контроль конъюгации у бактерий кишечной группы. Эта плазмида может находиться как в автономном состоянии, так и интегрироваться в хромосому клетки. Находясь в автономном состоянии, она контролирует только собственный перенос, при котором клетка, лишенная F-плазмиды, превращается в Р+ -клетку (клетку, содержащую F-плазмиду). F-плазмида может интегрироваться в определенные участки бактериальной хромосомы, в этом случае она станет контролировать конъюгативный перенос хромосомы клетки. При этом одна из нитей ДНК хромосомы в месте интеграции F-плазмиды разрезается, и ее 5'-конец через донорный мостик начинает протягиваться в клетку-реципиент. Репликация ДНК в этом случае протекает по принципу «крутящегося» кольца. Таким образом, конъюгация начинается с установления контакта между донором и реципиентом с помощью донорной ворсинки. Последняя смыкается с рецептором клеточной мембраны клетки реципиента. Нередко такой контакт устанавливается не только между двумя клетками, а между многими клетками, образуя агрегаты спаривания. Поскольку донорный мостик является непрочным, процесс конъюгации может в любой момент прерваться. Поэтому при конъюгации может переноситься или часть хромосомы, или, реже, полная хромосома. 112
Авторское право на материал
Копирование материалов допускается только с указанием активной ссылки на статью!
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Похожие статьи