СИЛА, КОТОРАЯ ДВИЖЕТ МИРАМИ
Одна из аксиом современной науки гласит: любые материальные объекты во Вселенной связаны между собой силами всемирного тяготения. Благодаря этим силам формируются и существуют небесные тела - планеты, звезды, галактики и Метагалактика в целом. Форма и структура этих тел и материальных систем, а также относительное движение и взаимодействие определяются динамическим равновесием между силами их тяготения и силами инерции масс.
В течение всей своей жизни человек ощущает силу тяжести своего тела и предметов, которые ему приходится поднимать. Одной из главных забот, с которыми сталкиваются люди, летая в околоземном пространстве на самолетах, ракетах и космических аппаратах, является преодоление сил тяготения с помощью различных двигателей с источниками энергии. И вместе с тем, несмотря на обыденность и кажущуюся простоту этого явления, физическая природа сил тяготения неясна. Автором открытия сил тяготения считается Исаак Ньютон (правда, приоритет открытия закона всемирного тяготения оспаривал его современник - известный английский ученый Роберт Гук).
Однако еще на полтора века раньше до Ньютона и Гука знаменитый польский ученый Николай Коперник писал о тяготении: "Тяжесть есть не что иное, как естественное стремление, которым отец Вселенной одарил все частицы, а именно соединяться в одно общее целое, образуя тела шаровидной формы". Аналогичные мысли высказывали и другие ученые. Найденные Ньютоном и Гуком формулы закона тяготения позволили с большой точностью рассчитать орбиты планет и создать первую математическую модель Вселенной. Однако раскрыть природу тяготения авторам этого закона не удалось. В истории известны попытки решить данную задачу. В середине прошлого века Джеймс Клерк Максвелл, создатель теории электромагнетизма, решил, что гравитация (тяготение) имеет электромагнитную природу. Он предложил модель поля тяготения в виде силовых линий в упругой среде (в эфире), заполняющей все пространство. В разработке электромагнитной теории гравитации принимали участие и сделали оригинальные предложения другие известные ученые: Г. Лоренц, А. Пуанкаре и А. Эйнштейн.
Тем не менее до сих пор физическая сущность всемирного тяготения остается тайной. Более того, на сегодня сложилось два по существу диаметрально противоположных взгляда на природу тяготения. Ученые спорят о природе тяготения: имеет ли оно вещественно-энергетический субстрат в виде квантово-полевых образований (материальных частиц - гравитонов) или же обусловлено исключительно геометрическими свойствами пространственно-временного континуума. Так, согласно геометрической трактовке, отнюдь не силы тяготения обусловливают отклонение вблизи Солнца, проходящего мимо светового луча далекой звезды (рис. 104), а искривление пространства-времени под воздействием дневного светила (рис. 105). Кредо тех, кто отстаивает последнюю точку зрения: "Физика есть геометрия". Однако такие геометрические понятия, как кривизна, многомерность, неевклидовость, сингулярность и т. п. (это уже было показано в первой части книги), являются чистыми математическими отношениями и не имеют субстанциального выражения.
Сформулированный Ньютоном закон всемирного тяготения стал одним из выдающихся достижений в области естествознания за всю историю его существования. Этот закон позволил на строгой научной основе подвести физическую базу под философско-космистские положения о материальном единстве мира, всеобщей взаимосвязи всех природных явлений. Закон всемирного тяготения оказался одним из самых впечатляющих и вместе с тем загадочных основоположений теоретического естествознания. Применение этого закона позволило добиться выдающихся успехов в области небесной механики (предсказавшей "на кончике пера" существование ранее неизвестных планет) и астрофизики, космологии и практического освоения космического пространства, позволило летательным аппаратам и человеку преодолеть земное притяжение и осуществить прорыв в просторы Вселенной. У некоторых мыслителей возникло даже искушение раздвинуть границы его применения. Так, один из главных представителей утопического социализма, Сен-Симон, пытался перенести действие закона всемирного тяготения на общественные отношения и на данной основе построить свою систему будущего гармонического, свободного от эксплуатации строя.
После опубликования ньютоновских "Начал" обозначилась и стойкая тенденция интерпретировать закон всемирного тяготения как результат и свидетельство божественного проявления. Вот типичный образчик подобного истолкования закона Ньютона, выраженный в стихотворной форме:
...И нарекли человека Ньютоном,
Он пришел и открыл высший закон,
Вечный, универсальный, единственный, неповторимый, как сам Бог,
И смолкли миры, и он изрек: "ТЯГОТЕНИЕ",
И это слово было самим словом творения.
Следует сказать, что на самого Ньютона и дальнейшую интерпретацию его идей оказали заметное влияние так называемые кембриджские платоники (в Кембридже, где творил Ньютон, всегда, вплоть до наших дней, были сильны и живучи мистические традиции). Сам Ньютон - хотя об этом и не любят вспоминать, а тем более писать - также не чурался мистицизма: он всерьез интересовался вопросами астрологии и даже алхимии. Отсюда - и известный иррационализм, невозможность вразумительного объяснения природы гравитационных сил. Кстати, до сих пор нет и общепризнанного объяснения, что же такое сила или что такое масса.
И все же с помощью открытых Ньютоном простейших формул, в которых участвуют только массы тел и силы, действующие между ними, удается описать процессы взаимодействия любых материальных объектов природы - живых и неживых, земных или космических. При этом не следует забывать, что силы взаимодействия между телами не являются у Ньютона какими-то абстракциями (например, векторами, как их изображают при математическом описании задач механики), а вполне материальными силами, возникающими как результат действия масс материальных тел при их ускоренном или замедленном движении. Благодаря своей материальности силы ограничены быстродействием и дальностью действия. Убедиться в этом можно на любом примере. Каждый из нас, пользуясь силой своих мышц, замечает, что их быстродействие ограничено, а сама сила является результатом преобразования в материальных телах одних видов энергии в другие (аналогичные примеры можно наблюдать при силовом действии пружин, упругих тел и т. п.).
Классическая механика установила, что массы тел не исчезают и не возникают из ничего, а физические процессы не могут протекать без сил. Кроме того, протекание физических процессов между телами является объективной реальностью и не зависит от наблюдателя, если он не оказывает силового воздействия на этот процесс. Еще одна особенность классической механики: в ней нет абсолютизации скорости движения тел, она справедлива и может быть использована для любых скоростей движения тел, без ограничения. Однако, Ньютон был деистом: первопричиной (точнее - первотолчком природы) он считал Бога.
Потому при чтении ньютоновских трудов встречаются формулировки, которые могут трактоваться различным образом. Например, такая формулировка, как "природа подчиняется математическим законам", требует специального пояснения. Дело в том, что абстрактно-математический аппарат лишь описывает объективные закономерности природы (например, тяготение) и помогает в их познании. Напрямую утверждать, что математические закономерности лежат в основе природы, нельзя. Ибо, по существу, это означает признание первичности идеальных абстракций по отношению к объективной реальности. Поэтому и приходится делать соответствующую поправку, чтобы исключительно важная роль математики все же не абсолютизировалась и не приводила тем самым научное познание к крену, чреватому далеко идущими последствиями. Но полностью избежать "волчьих ям" удается не всегда и не всем. Некоторые современные истолкования тяготения - характерный тому пример.
Одна из аксиом современной науки гласит: любые материальные объекты во Вселенной связаны между собой силами всемирного тяготения. Благодаря этим силам формируются и существуют небесные тела - планеты, звезды, галактики и Метагалактика в целом. Форма и структура этих тел и материальных систем, а также относительное движение и взаимодействие определяются динамическим равновесием между силами их тяготения и силами инерции масс.
В течение всей своей жизни человек ощущает силу тяжести своего тела и предметов, которые ему приходится поднимать. Одной из главных забот, с которыми сталкиваются люди, летая в околоземном пространстве на самолетах, ракетах и космических аппаратах, является преодоление сил тяготения с помощью различных двигателей с источниками энергии. И вместе с тем, несмотря на обыденность и кажущуюся простоту этого явления, физическая природа сил тяготения неясна. Автором открытия сил тяготения считается Исаак Ньютон (правда, приоритет открытия закона всемирного тяготения оспаривал его современник - известный английский ученый Роберт Гук).
Однако еще на полтора века раньше до Ньютона и Гука знаменитый польский ученый Николай Коперник писал о тяготении: "Тяжесть есть не что иное, как естественное стремление, которым отец Вселенной одарил все частицы, а именно соединяться в одно общее целое, образуя тела шаровидной формы". Аналогичные мысли высказывали и другие ученые. Найденные Ньютоном и Гуком формулы закона тяготения позволили с большой точностью рассчитать орбиты планет и создать первую математическую модель Вселенной. Однако раскрыть природу тяготения авторам этого закона не удалось. В истории известны попытки решить данную задачу. В середине прошлого века Джеймс Клерк Максвелл, создатель теории электромагнетизма, решил, что гравитация (тяготение) имеет электромагнитную природу. Он предложил модель поля тяготения в виде силовых линий в упругой среде (в эфире), заполняющей все пространство. В разработке электромагнитной теории гравитации принимали участие и сделали оригинальные предложения другие известные ученые: Г. Лоренц, А. Пуанкаре и А. Эйнштейн.
Тем не менее до сих пор физическая сущность всемирного тяготения остается тайной. Более того, на сегодня сложилось два по существу диаметрально противоположных взгляда на природу тяготения. Ученые спорят о природе тяготения: имеет ли оно вещественно-энергетический субстрат в виде квантово-полевых образований (материальных частиц - гравитонов) или же обусловлено исключительно геометрическими свойствами пространственно-временного континуума. Так, согласно геометрической трактовке, отнюдь не силы тяготения обусловливают отклонение вблизи Солнца, проходящего мимо светового луча далекой звезды (рис. 104), а искривление пространства-времени под воздействием дневного светила (рис. 105). Кредо тех, кто отстаивает последнюю точку зрения: "Физика есть геометрия". Однако такие геометрические понятия, как кривизна, многомерность, неевклидовость, сингулярность и т. п. (это уже было показано в первой части книги), являются чистыми математическими отношениями и не имеют субстанциального выражения.
Сформулированный Ньютоном закон всемирного тяготения стал одним из выдающихся достижений в области естествознания за всю историю его существования. Этот закон позволил на строгой научной основе подвести физическую базу под философско-космистские положения о материальном единстве мира, всеобщей взаимосвязи всех природных явлений. Закон всемирного тяготения оказался одним из самых впечатляющих и вместе с тем загадочных основоположений теоретического естествознания. Применение этого закона позволило добиться выдающихся успехов в области небесной механики (предсказавшей "на кончике пера" существование ранее неизвестных планет) и астрофизики, космологии и практического освоения космического пространства, позволило летательным аппаратам и человеку преодолеть земное притяжение и осуществить прорыв в просторы Вселенной. У некоторых мыслителей возникло даже искушение раздвинуть границы его применения. Так, один из главных представителей утопического социализма, Сен-Симон, пытался перенести действие закона всемирного тяготения на общественные отношения и на данной основе построить свою систему будущего гармонического, свободного от эксплуатации строя.
После опубликования ньютоновских "Начал" обозначилась и стойкая тенденция интерпретировать закон всемирного тяготения как результат и свидетельство божественного проявления. Вот типичный образчик подобного истолкования закона Ньютона, выраженный в стихотворной форме:
...И нарекли человека Ньютоном,
Он пришел и открыл высший закон,
Вечный, универсальный, единственный, неповторимый, как сам Бог,
И смолкли миры, и он изрек: "ТЯГОТЕНИЕ",
И это слово было самим словом творения.
Следует сказать, что на самого Ньютона и дальнейшую интерпретацию его идей оказали заметное влияние так называемые кембриджские платоники (в Кембридже, где творил Ньютон, всегда, вплоть до наших дней, были сильны и живучи мистические традиции). Сам Ньютон - хотя об этом и не любят вспоминать, а тем более писать - также не чурался мистицизма: он всерьез интересовался вопросами астрологии и даже алхимии. Отсюда - и известный иррационализм, невозможность вразумительного объяснения природы гравитационных сил. Кстати, до сих пор нет и общепризнанного объяснения, что же такое сила или что такое масса.
И все же с помощью открытых Ньютоном простейших формул, в которых участвуют только массы тел и силы, действующие между ними, удается описать процессы взаимодействия любых материальных объектов природы - живых и неживых, земных или космических. При этом не следует забывать, что силы взаимодействия между телами не являются у Ньютона какими-то абстракциями (например, векторами, как их изображают при математическом описании задач механики), а вполне материальными силами, возникающими как результат действия масс материальных тел при их ускоренном или замедленном движении. Благодаря своей материальности силы ограничены быстродействием и дальностью действия. Убедиться в этом можно на любом примере. Каждый из нас, пользуясь силой своих мышц, замечает, что их быстродействие ограничено, а сама сила является результатом преобразования в материальных телах одних видов энергии в другие (аналогичные примеры можно наблюдать при силовом действии пружин, упругих тел и т. п.).
Классическая механика установила, что массы тел не исчезают и не возникают из ничего, а физические процессы не могут протекать без сил. Кроме того, протекание физических процессов между телами является объективной реальностью и не зависит от наблюдателя, если он не оказывает силового воздействия на этот процесс. Еще одна особенность классической механики: в ней нет абсолютизации скорости движения тел, она справедлива и может быть использована для любых скоростей движения тел, без ограничения. Однако, Ньютон был деистом: первопричиной (точнее - первотолчком природы) он считал Бога.
Потому при чтении ньютоновских трудов встречаются формулировки, которые могут трактоваться различным образом. Например, такая формулировка, как "природа подчиняется математическим законам", требует специального пояснения. Дело в том, что абстрактно-математический аппарат лишь описывает объективные закономерности природы (например, тяготение) и помогает в их познании. Напрямую утверждать, что математические закономерности лежат в основе природы, нельзя. Ибо, по существу, это означает признание первичности идеальных абстракций по отношению к объективной реальности. Поэтому и приходится делать соответствующую поправку, чтобы исключительно важная роль математики все же не абсолютизировалась и не приводила тем самым научное познание к крену, чреватому далеко идущими последствиями. Но полностью избежать "волчьих ям" удается не всегда и не всем. Некоторые современные истолкования тяготения - характерный тому пример.
Авторское право на материал
Копирование материалов допускается только с указанием активной ссылки на статью!
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Похожие статьи