АВТОНОМНОЕ ПИТАНИЕ УСТРОЙСТВ ОХРАНЫ

Энциклопедии » Разведка
Неотъемлемой частью системы безопасности является источник бесперебойного питания. Он должен обеспечивать электропитанием все элементы охранных систем. Это относится как к проводным системам, так и к беспроводным. Надежность охранных устройств непосредственно определяется работоспособностью источника питания. При разветвленной схеме системы безопасности, источников
бесперебойного питания должно быть несколько. Они обеспечивают электроэнергией группы близко расположенных охранных устройств. Ряд охранных устройств оснащается солнечными элементами, например, барьерные датчики фирмы OPTEX. Четырех часов умеренной освещенности достаточно для полной зарядки батарей. Для удаленных объектов, кроме солнечных батарей, могут использоваться дизель-генераторы или ветрогенераторы с батареей герметичных необслуживаемых аккумуляторов. Такие энергоустановки позволяют
питать электроэнергией аварийное освещение и другие жизненно важные системы объектов. В беспроводных системах датчики имеют только автономное питание. В качестве источников питания для беспроводных датчиков следует использовать только щелочные гальванические источники тока одноразового действия. Они обладают максимальной электрической емкостью на единицу веса и длительными сроками хранения. Для датчиков беспроводных систем могут использоваться и герметичные аккумуляторы, однако затраты на их обслуживание вряд ли приведут
к экономии.
Кроме того, герметичные аккумуляторы обладают меньшей удельной энергией в сравнении с гальваническими источники тока одноразового действия. Современные системы безопасности контролируют величину питающего напряжения и сигнализируют о неисправностях питания. Это относится ко всем устройствам, включая автомобильные.
Гальванические источники тока одноразового действия Спектр приборов, в которых используются сухие элементы, весьма
широк и, кроме того, требуется их периодическая замена, существуют нормы на их габариты [5]. Следует подчеркнуть, что габариты элементов, выпускаемых различными изготовителями, могут несколько отличаться в части расположения выводов и других особенностей, оговоренных в их спецификациях
В процессе разряда напряжение сухих элементов падает от номинального до напряжения отсечки (напряжение отсечки -- минимальное напряжение, при котором батарея способна отдавать минимальную энергию), т.е. обычно от 1,2 до 0,8 В/элемент, в зависимости от особенностей применения.
В случае разряда после замыкания цепи напряжение на его выводах резко уменьшается до некоторой величины, несколько меньшей исходного напряжения. Ток, протекающий при этом, называется начальным током разряда.
Функциональные возможности сухого элемента зависят от потребления тока, напряжения отсечки и условий разряда. Эффективность элемента повышается по мере уменьшения тока разряда.
Угольно-цинковые элементы
Номинальное напряжение угольно-цинкового элемента составляет 1,5 В.
Достоинством угольно-цинковых элементов является их относительно низкая стоимость. К существенным недостаткам следует отнести значительное снижение напряжения при разряде, невысокую удельную мощность (5...10 Вт/кг) и малый срок хранения.
Низкие температуры снижают эффективность использования гальванических элементов, а внутренний разогрев батареи его повышает.
Щелочные элементы
Как и в угольно-цинковых, в щелочных элементах используется анод из MnO2 и цинковый катод с разделенным электролитом.
Отличие щелочных элементов от угольно-цинковых заключается в применении щелочного электролита, вследствие чего газовыделение при разряде фактически отсутствует, и их можно выполнять герметичными, что очень важно для целого ряда их применений.
Напряжение щелочных элементов примерно на 0,1 В меньше, чем угольно-цинковых, при одинаковых условиях. Следовательно, эти элементы взаимозаменяемы.
Напряжение элементов с щелочным электролитом изменяется значительно меньше, чем у элементов с солевым электролитом. Элементы с щелочным электролитом также имеют более высокие удельную энергию (65...90 Втч/кг), удельную мощность (100...150 кВтч/м3) и более длительный срок хранения.
Аккумуляторы
Аккумуляторы являются химическими источниками электрической энергии многоразового действия. Они состоят из двух электродов (положительного и отрицательного), электролита и корпуса. Накопление энергии в аккумуляторе происходит при протекании химической реакции окисления-восстановления электродов. При разряде аккумулятора происходят обратные процессы. Напряжение аккумулятора -- это разность потенциалов между полюсами аккумулятора при фиксированной нагрузке.
Аккумуляторы, технология "DRYFIT"
Наиболее удобными и безопасными среди кислотных аккумуляторов являются абсолютно необслуживаемые герметичные аккумуляторы VRLA (Valve Regulated Lead Acid), произведенные по технологии "dryfit". Электролит в этих аккумуляторах находится в желеобразном состоянии. Это гарантирует надежность аккумуляторов и безопасность их эксплуатации.
Технические характеристики аккумуляторов "DRYFIT"
В зависимости от предполагаемого режима работы, для источников бесперебойного питания рекомендуются два типа аккумуляторов: "dryfit" А400 -- для буферного режима и А500 -- для режима "буфер + цикл".
Эти аккумуляторы характеризуются следующими преимуществами:
абсолютно необслуживаемые в течение всего срока службы;
продолжительный срок службы (с сохранением остаточной емкости 80%);
технология "dryfit": электролит зафиксирован в желеобразном состоянии;
очень малое газовыделение за счет системы внутренней рекомбинации;
способность быстрого восстановления емкости;
очень малый саморазряд: даже после 2 лет хранения (при 20ШС) не требуется подзаряд перед вводом в эксплуатацию;
допускается перезаряд;
устойчивы к глубокому разряду согласно DIN 43539 ч. 5;
диапазон емкости: от 5,5 до 180 Ач для A400 и от 2,0 до 115 Ач для A500;
соответствуют VDE 0108 ч.1 для аварийного энергоснабжения.
Аккумуляторы А500 более универсальны и являются последовательной разработкой и предназначены для смешанного режима -- буфер+цикл. В них намного улучшены характеристики саморазряда за счет изменения конструкции банок и состава электролита. Соответствуют следующим нормам: DIN, BS, IES, а также имеют допуск по VdS.
Условное обозначение аккумуляторов "dryfit" содержит:
первая буква и три следующие за ней цифры -- тип аккумулятора;
последующие цифры -- номинальная емкость, Ач;
последние буквы -- тип вывода аккумулятора (согласно DIN 72311, предельные токи разряда достигаются только при использовании штатного контакта).
Особенности заряда аккумуляторов "DRYFIT"
После полного заряда аккумулятора дальнейшее продолжение заряда вызывает выделение газов (происходит "перезаряд"). В классических аккумуляторах в процессе перезаряда удаляется вода и происходит распыление электролита с выделением газов. Часть электролита разбрызгивается через вентиляционные отверстия, т.е. теряется. При добавлении воды в электролит уменьшается его концентрация и ухудшаются характеристики аккумулятора.
В аккумуляторах, произведенных по технологии "dryfit", реакции электродов происходят с участием электролита. Композиция электролита не изменяется по мере заряда или разряда. Поэтому электролит сконструирован так, что генерация кислорода в процессе заряда компенсируется другими химическими реакциями, поддерживающими условия равновесия, в которых батарея может длительно заряжаться без потерь воды. Это принципиально важно для герметичных аккумуляторов.
Напряжение заряда аккумуляторов А400 для режима плавающего заряда должно находиться в пределах от 2,3 В до 2,23 В/элемент. При заряде 12 В аккумуляторов, состоящих из 6-ти элементов (банок), эта цифра умножается на 6, т.е. напряжение заряда для 12 В аккумулятора должно находиться в пределах от 13,8 В до 13,38 В. Для 6-ти вольтовых аккумуляторов число элементов 3, для 4-х вольтовых -- 2, для 2-х вольтовых -- 1.
При изменяющейся температуре зарядное напряжение следует корректировать согласно графиков. При этом напряжение заряда может изменяться в пределах от 2,15 В/элемент до 2,55 В/элемент при изменении температуры в пределах от -30ШС до +50ШС.
При буферном режиме напряжение заряда при 20ШС должно находиться в пределах 2,3...2,35 В/элемент. Колебание напряжения не должно превышать Щ30 мВ/элемент.
При зарядном напряжении большем 2,4 В следует ограничивать ток заряда до 0,5 А на каждый Ач для двух режимов.
Для аккумуляторов А400 максимальное напряжение заряда составляет 2,3 В/элемент, а для А500 -- 2,4 В/элемент.
Для аккумуляторов А500 возможны два режима: буферный и циклический. При циклическом режиме заряда зарядное напряжение должно быть выше, чем при буферном для того, чтобы увеличить время между циклами заряда.
Авторское право на материал
Копирование материалов допускается только с указанием активной ссылки на статью!

Похожие статьи

Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.