Электромагнитный двигатель

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
На состоявшейся 16 января 2001 года пресс-конференции в Доме журналиста группа российских конструкторов заявила, что у них есть чертежи и готовые модели уникального электромагнитного двигателя, которому не нужно топливо, поскольку движущую силу он черпает из взаимодействия с магнитным полем Земли. Если станцию «Мир» переведут не на низкую, как задумано, а на более высокую орбиту, то за появляющийся в результате этого маневра полугодовой запас времени конструкторы смогут «за сотню миллионов рублей сделать столько двигателей, сколько нужно для вечного удержания станции на орбите».
Околоземные аппараты, которые летают на самом деле не в открытом космосе, а в верхних слоях атмосферы, из-за сопротивления разреженного воздуха теряют свою скорость и падают на Землю. Чтобы поддерживать их орбиту, нужно постоянно доставлять туда топливо. Для станции «Мир» это означает запуск раз в два месяца транспортного корабля. Проводить такое количество запусков страна давно уже не в состоянии. С другой стороны, Россия связана государственными обязательствами по совместному с США строительству Международной космической станции.
Благодаря электромагнитному двигателю появилась реальная техническая возможность не топить орбитальную космическую станцию «Мир». Реальная скорость деградации материалов «Мира» оказалась значительно меньше расчетной. Специалисты из РКК «Энергия» смело могли продлить ресурс станции еще на 3–4 года. Можно было заменить и электронику. Однако все эти доводы упирались в главное — в стране нет денег на регулярные «грузовики» с топливом.
Однако еще летом 2000 года в РКК «Энергия» был подан проект электромагнитного двигателя от конструктора Алексея Ланюка. Согласно его расчетам, движок способен создать силу тяги, которая компенсировала бы торможение станции из-за сопротивления атмосферы. Вскоре на рассмотрение пришел аналогичный проект от конструктора из НИИ электромеханики Рудольфа Бихмана и тоже затерялся где-то в столах чиновников от космонавтики.
Ланюк и Бихман предлагали двигатель, который создает тягу за счет преобразования электротока, получаемого с солнечных батарей космического корабля, в направленное магнитное поле. Такого двигателя еще не было ни в космосе, ни на земле, ни у нас, ни у американцев.
Для ведущего научного сотрудника НИИ электромеханики Рудольфа Бихмана управление космическими аппаратами является его основной специальностью. Ведь НИИ электромеханики — участник программы создания метеорологических спутников серии «Метеор».

Морской старт

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Главная причина, приведшая к созданию плавучего плацдарма — это безусловная выгода при выводе космических объектов на так называемую геостационарную орбиту. На ней, расположенной в плоскости экватора на расстоянии около 36000 километров от поверхности Земли, размещают обычно спутники связи.
Запуск с экватора позволяет не только обойтись без сверхэнергоемких маневров для поворота плоскости орбиты спутника, но и использовать при пуске ракеты-носителя дополнительный прирост скорости за счет вращения Земли. Таким образом, при той же мощности можно вывести гораздо больший полезный груз.
Но нет ни одной страны, расположенной на экваторе, где можно было бы обеспечить столь необходимую для космических запусков стабильность — сейсмическую, климатическую и политическую. Отсюда возникла идея создания плавающего, то есть передвижного, космодрома.
Интересно, что проект морского старта дважды обсуждался еще в СССР. Что неудивительно — Байконур слишком далеко от экватора, в результате чего тот же «Протон» выводит на геостационарную орбиту только 1800 килограммов, тогда как на траекторию к Марсу — около пяти тонн! Однако в итоге проект отвергли как фантастический.
Снова РКК «Энергия» заинтересовалась им, когда ученые начали обдумывать способ выброса в дальний космос радиоактивных отходов. Для этого стала прорабатываться концепция переделки супертанкера в стартовую площадку. В итоге концепция превратилась в одно из самых дерзких инженерных свершений конца XX столетия.
Для осуществления замысла «Морского старта» был создан международный консорциум в составе США, России, Норвегии и Украины. Координация работ была возложена на американскую аэрокосмическую компанию «Боинг». Она же оборудовала всем необходимым порт основного базирования плавучего космодрома в Лонг-Биче. Кроме того, она произвела обтекатели для запускаемых аппаратов. Также «Боинг» обеспечил их сопряжение в единую космическую головную часть, которая, в свою очередь, затем была состыкована с ракетой-носителем.

Космодромы

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Ракета-носитель с очередным спутником Земли или космическим кораблем стартует с космодрома. Космодром — очень сложное, многоплановое сооружение, с большим количеством сложных технических устройств.
Стартовые площадки для запуска ракет должны непременно находиться в безлюдной местности, где опасность для населения при несчастном случае минимальна. Есть и научно обоснованные причины для выбора места вблизи экватора: скорость вращения Земли вокруг своей оси здесь наиболее высока. Ракета, стартовавшая возле экватора в направлении вращения Земли (на восток), начинает свой полет с дополнительной скоростью вращения Земли в этой точке. Это преимущество используется при расчете мощности ракет.
Обычно космодромы занимают довольно большую территорию. Место для строительства космодрома выбирается с учетом многих, часто противоречивых, условий. Космодром должен быть достаточно удален от крупных населенных пунктов — ведь отработанные ракетные ступени вскоре после старта падают на землю. Трассы ракет не должны препятствовать воздушным сообщениям, и в то же время нужно проложить их так, чтобы они проходили над всеми наземными пунктами радиосвязи. Учитывается при выборе места и климат. Сильные ветры, высокая влажность, резкие перепады температур могут значительно усложнить работу космодрома.
Каждая страна решает эти вопросы в соответствии со своими природными и другими условиями. Так, советский космодром Байконур расположен в полупустыне Казахстана, первый французский космодром был построен в Сахаре, американский — на полуострове Флорида, а итальянцы создали у берегов Кении плавучий космодром.
Первым космодромом стал знаменитый Капустин Яр в Астраханской области. Созданный в 1946–1947 годах, он первоначально был испытательным полигоном советской ракетно-космической техники. С него была запущена первая советская экспериментальная баллистическая ракета дальнего действия. В 1948–1956 годах в Капустином Яру испытывались многие советские геофизические и баллистические ракеты. Этими работами руководил С.П. Королёв. Опыт создания и эксплуатации полигона в Капустином Яру был использован при строительстве космодрома Плесецк и главной советской космической гавани — Байконура.

Международная космическая станция

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Идея создания международной космической станции возникла в начале 1990-х годов. Проект стал международным, когда к США присоединились Канада, Япония и Европейское космическое агентство. В декабре 1993 года США совместно с другими странами, участвующими в создании космической станции «Альфа», предложили России стать партнером данного проекта. Российское правительство приняло предложение, после чего некоторые эксперты стали называть проект «Ральфа», то есть «Русская Альфа», — вспоминает представитель НАСА по связям с общественностью Эллен Клайн.
По прикидкам экспертов, строительство «Альфа-Р» может быть завершено к 2002 году и обойдется примерно в 17,5 миллиардов долларов. «Это очень дешево, — отметил руководитель НАСА Даниэл Голдин. — Если бы мы работали одни, затраты были бы большими. А так, благодаря сотрудничеству с русскими, мы получаем не только политические, но и материальные выгоды…»
Именно финансы, точнее их недостаток, и заставили НАСА искать партнеров. Первоначальный проект — он назывался «Свобода» — был весьма грандиозен. Предполагалось, что на станции можно будет ремонтировать спутники и целые космические корабли, изучать функционирование человеческого организма при длительном пребывании в невесомости, вести астрономические исследования и даже наладить производство.
Привлекли американцев и уникальные методики, на которые были положены миллионы рублей и годы работы советских ученых и инженеров. Поработав в одной «упряжке» с россиянами, они получили и достаточно полные представления о российских методиках, технологиях и т.д., касающихся долговременных орбитальных станций. Трудно оценить, сколько миллиардов долларов они стоят.
Американцы изготовляют для станции научную лабораторию, жилой модуль, стыковочные блоки «Ноуд-1» и «Ноуд-2». Российская сторона разрабатывает и поставляет функционально-грузовой блок, универсальный стыковочный модуль, транспортные корабли снабжения, служебный модуль и ракету-носитель «Протон».

Космическая лаборатория «Марс патфайндер»

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Еще древних астрологов и астрономов завораживала странная, казалось, зловеще красная планета, столь отличная от всех других планет Солнечной системы. Интерес многократно возрос, когда в 1877 году Д.В. Скиапарелли «обнаружил» на Марсе рукотворные «каналы».
Однако интерес ученых Марс вызвал совсем другой причиной. Они считают, что понимание закономерностей эволюции твердой оболочки и глубоких недр Марса, исследование состава и истории атмосферы и гидросферы — ключ к расшифровке законов развития и не только Земли, но и шаг к познанию истории всей Солнечной системы.
Первая автоматическая станция отправилась к Марсу осенью 1962 года. То был советский «Марс-1». Но достигнуть «красной» планеты ей не удалось. С 1965 по 1969 год американские станции «Маринер-4», «Маринер-6», «Маринер-7» передали более двухсот снимков «красной» планеты.
Дорога на поверхность Марса была проложена только в 1971 году. Зато это сделали сразу два аппарата. Сначала советская автоматическая станция «Марс-2» доставила на поверхность Марса капсулу, а спускаемый аппарат следующей советской станции — «Марс-3» — совершил первую мягкую посадку. Одновременно естественные спутники Марса — Фобос и Деймос обрели рукотворных собратьев: обе советские станции вместе с прибывшим к Марсу американским аппаратом «Маринер-9» стали его первыми искусственными спутниками. Они позволили людям впервые подробно рассмотреть Марс с близкого расстояния.
Следующие четыре советские автоматические станции, запущенные в 1973 году, уточнили полученные с орбит данные, а спускаемый аппарат одной из них — «Марса-6» — впервые прощупал атмосферу планеты изнутри. Так совместными усилиями двух стран — Советского Союза и США — был подготовлен очередной этап в исследовании Марса.
Вскоре на Марс опустились два американских аппарата «Викинг». Они передали на Землю цветные фотографии окружающей их местности и провели анализ марсианского грунта, определив его химический состав. Всего «Викинг-1» и «Викинг-2» отправили на Землю более пятидесяти тысяч снимков. Но главным в их программе были поиски жизни. Автоматические исследователи пытались найти на Марсе органические вещества. Тогда удалось проанализировать только пыль, покрывающую поверхность планеты, определить более или менее точно содержание в ней железа, магния, кальция, алюминия, калия, серы и хлора.

Телескоп «Хаббл»

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Приоритет изготовления телескопа оспаривается до сих пор. Согласно ряду документов, один из первых инструментов был сделан в Нидерландах Захарием Янсеном в 1604 году по итальянской модели 1590 года. Другие протоколы опросов свидетелей сообщают, что первые зрительные трубы были изобретены около 1605–1610 годов в Миддельбурге изготовителем очков Иоанном Лапреем. В любом случае уже в 1608 году телескопы делали многие мастера. В частности, Якоб Метциус.
В 1610 году Галилей создал телескоп с увеличением 32 раза! Астрономические исследования ученого принесли ему большую славу. Под впечатлением успехов Галилея Иоганн Кеплер вновь вернулся в 1610 году к прикладной оптике. Он предложил принципиально новую оптическую схему зрительной трубы. До этого в ней использовалась лишь одна комбинация линз — последовательное соединение рассеивающей (вогнутой) в качестве объектива и собирающей (выпуклой) в качестве окуляра.
Труба же Кеплера имела две выпуклые линзы, что помимо большего поля зрения впервые позволило получить прямое изображение наблюдаемого объекта. Такой телескоп мог служить визирным приспособлением, то есть из инструмента чисто наблюдательного становился еще и измерительным. А это значительно расширило область его применения.
Однако первые телескопы давали изображения заметно искаженные различными дефектами (аберрациями). Ученые — которые тогда и были главными телескопостроителями — пытались устранить их, увеличивая фокусное расстояние объектива.
Так было до 1668 года, когда Исаак Ньютон впервые построил инструмент совершенно нового типа — телескоп-рефлектор (зеркальный), лишенный хроматической аберрации, свойственной линзовым устройствам (рефракторам). Объективом в нем служило вогнутое металлическое зеркало. От качества изготовления последнего и зависело совершенство изображения.
Через двадцать один год после Ньютона английский астроном и оптик Вильям Гершель отшлифовал зеркало диаметром 122 сантиметра. В то время это был величайший в мире рефлектор.

Орбитальная станция «Мир»

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Еще в начале XX века К.Э. Циолковский, мечтая об устройстве «эфирных поселений», наметил пути создания орбитальных станций.
Что же это такое? Как видно из названия, это тяжелый искусственный спутник, длительное время совершающий полет по околоземной, окололунной или околопланетной орбите. От обычных спутников орбитальную станцию отличают, прежде всего, ее размеры, оснащенность и универсальность: на ней можно проводить большой комплекс разнообразных исследований.
Как правило, она не имеет даже своей двигательной установки, поскольку коррекцию ее орбиты производят с помощью двигателей транспортного корабля. Зато на ней гораздо больше научного оборудования, она просторнее и уютнее, чем корабль. Космонавты прилетают сюда надолго — на несколько недель или даже месяцев. На это время станция становится их космическим домом, и для того чтобы сохранять в течение всего полета хорошую работоспособность, они должны чувствовать себя в ней комфортно и спокойно. В отличие от пилотируемых кораблей орбитальные станции не возвращаются на Землю.
Первой в истории орбитальной космической станцией стал советский «Салют», выведенный на орбиту 19 апреля 1971 года. 30 июня того же года к станции пристыковался корабль «Союз-11» с космонавтами Добровольским, Волковым и Пацаевым. Первая (и единственная) вахта продолжалась 24 дня. Затем некоторое время «Салют» находился в автоматическом беспилотном режиме, пока 11 ноября станция не закончила свое существование, сгорев в плотных слоях атмосферы.
За первым «Салютом» последовал второй, затем третий и так далее. В течение десяти лет в космосе отработало целое семейство орбитальных станций. Десятки экипажей провели на них множество научных экспериментов. Все «Салюты» представляли собой космические многоцелевые исследовательские лаборатории для продолжительных исследований со сменным экипажем. В отсутствие космонавтов все системы станции управлялись с Земли. Для этого использовались малогабаритные ЭВМ, в память которых были заложены стандартные программы управления операциями полета.
Самым крупным стал «Салют-6». Общая длина станции составляла 20 метров, а объем — 100 кубических метров. Масса «Салюта» без транспортного корабля — 18,9 тонны. На станции помещалось много разнообразной аппаратуры, в том числе крупногабаритные телескоп «Орион» и гамма-телескоп «Анна-111».

Космический корабль многоразового использования «Шаттл»

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Пока космические запуски были редкими, вопрос о стоимости ракет-носителей особого внимания к себе не привлекал. Но по мере освоения космоса он стал приобретать все большее значение. Стоимость ракеты-носителя в общей стоимости запуска космического аппарата бывает разная. Если носитель серийный, а космический аппарат, который он запускает, уникальный, стоимость носителя — около 10 процентов от общей стоимости запуска. Если космический аппарат серийный, а носитель уникальный — до 40 процентов и более. Высокая стоимость космической транспортировки объясняется тем, что ракета-носитель применяется один-единственный раз. Спутники и космические станции работают на орбите или в межпланетном пространстве, принося определенный научный или хозяйственный результат, а ступени ракеты, имеющие сложную конструкцию и дорогое оборудование, сгорают в плотных слоях атмосферы. Естественно, возник вопрос о снижении стоимости космических запусков за счет повторного запуска ракет-носителей.
Существует много проектов таких систем. Один из них — космический самолет. Это крылатая машина, которая, подобно воздушному лайнеру, взлетала бы с космодрома и, доставив полезный груз на орбиту (спутник или космический корабль), возвращалась бы на Землю. Но создать такой самолет пока невозможно, главным образом из-за необходимого соотношения масс полезного груза и полной массы машины. Экономически невыгодными или трудноосуществимыми оказывались и многие другие схемы летательных аппаратов многоразового использования.
Тем не менее в США все-таки взяли курс на создание космического корабля многоразового использования. Многие специалисты были против столь дорогостоящего проекта. Но его поддержал Пентагон.

Автоматические межпланетные станции «Вояджер»

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
В конце 1960-х годов американское Национальное управление по аэронавтике и исследованию космического пространства (НАСА) решило провести эксперимент «Большой тур», идея которого состояла в следующем.
Обычно космический аппарат может достичь одной планеты. Но иногда, раз в несколько десятилетий, планеты Солнечной системы как бы выстраиваются друг за другом, и траекторию полета удается провести сразу мимо нескольких. Подобная ситуация должна была сложиться в конце 1970-х – начале 1980-х годов, и американцы задались целью осмотреть за один полет все планеты, начиная с Марса. Для этого они решили использовать так называемый гравитационный маневр, когда космический аппарат догоняет планету и та «подтягивает» его, ускоряя и поворачивая. Но на «Большой тур» не хватило средств, пришлось ограничиться планетами-гигантами. Программа «Вояджер» за пять лет разработки и двенадцать лет оперативной работы потребовала девятьсот миллионов долларов.
В августе–сентябре 1977 году стартовали две автоматические межпланетные станции «Вояджер» массой 798 килограммов каждая. Устроены они одинаково.
Наиболее заметная часть «Вояджеров» — чашка остронаправленной антенны диаметром 3,66 метра, с помощью которой обеспечивается связь с Землей. На тыльной стороне антенны находится герметичный отсек для служебных приборов, имеющий форму десятигранной призмы. В нем размещены радиосистемы, аппаратура управления с бортовой электронно-вычислительной машиной, рулевые двигатели, преобразователи электропитания; на трех гранях отсека смонтированы радиаторы системы терморегулирования.
Электроэнергией станцию снабжают три радиоизотопных генератора, смонтированные на одной из трех штанг. Мощность генераторов в начале полета достигала 431 Вт.

Луноход-1

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
В НПО им. С.А. Лавочкина, что в подмосковных Химках, в конце ушедшего тысячелетия торжественно отметили тридцатилетие первого советского лунного самоходного аппарата — «Луноход-1». И только тогда впервые здесь рассказали, что советская программа из нескольких луноходов была лишь малой частью затеваемого обширного строительства лунной полувоенной базы Советского Союза. Хотя в те дни даже в документах с грифами «секретно» ее называли сугубо мирной.
Одним из немногих журналистов «Правды» и «Комсомолки», которым ЦК КПСС позволил писать на ракетно-космическую тематику, был Владимир Губарев. Вот что он рассказывал:
«Ее экипаж должен был состоять из 12 человек. В Крыму, под Евпаторией, соорудили "лунодром" — полигон, имитировавший пересеченную местность Моря Дождей, на котором испытывали ходовые качества лунного трактора. Причем не только в автоматическом режиме. Никогда не забуду, как лихо управлял им, сидя верхом, космонавт Валерий Быковский. Отрабатывались поездки по Луне.
Из тех, кто готовился стать "лунными трактористами", удалось установить лишь несколько фамилий. Вот они, называемые впервые, овеянные несостоявшейся славой, — Алексей Леонов, Петр Колодин, Владимир Аксенов, Олег Макаров.
Рядом, едва ли не в прямой видимости с лунодромом, в крымскую землю был вкопан военный корабль, с которого сняли напалубные орудийные башни. Вместо них на поворотные механизмы поставили гигантские параболические антенны — так они могли, медленно вращаясь, следить за прохождением по небосводу советской и супостатской космической техники. Трюмы напичкали всевозможной электроникой, а в каютах вместо моряков поселились инженеры наземного комплекса управления. Там же во время командировок жил экипаж "Лунохода-1".
Мало кто знает еще один любопытный факт из космической гонки. В то время как американцы, отыгрываясь за наш первый искусственный спутник и Гагарина, вышли на финишную прямую подготовки полета человека на Луну, в СССР уже был готов план лунной деревни. Было сделано четыре экземпляра "Лунохода-1". И все они предназначались для работы в ней — можете представить себе масштабы?»
На том же юбилейном собрании выяснилось, что носитель класса «Протон» с первым «Луноходом-1» стартовал 19 февраля 1969 года, но взорвался на пятьдесят второй секунде полета. Таким образом, Нил Армстронг стал первым на Луне. Это случилось в июле того же года. И только в ноябре состоялся успешный полет второго экземпляра советского «Лунохода-1».

Космический корабль «Апполон-11»

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Идея полета к Луне возникла как реакция на систематическое отставание американских специалистов от специалистов СССР на начальном этапе освоения космоса. Запуск в СССР первого в мире искусственного спутника Земли был расценен в США как «…уничтожающий удар по престижу Соединенных Штатов». Что касается полетов автоматических станций к Луне, то советские аппараты «Луна-1» и «Луна-2» и здесь оказались первыми. Попытка опередить Советский Союз в запуске в космос человека принесла новое разочарование — первым космонавтом стал советский гражданин Ю.А. Гагарин.
В мае 1961 года президент Джон Кеннеди поставил задачу высадить первых людей на Луне до конца десятилетия, несмотря на то что никто тогда не представлял себе, каким образом это сделать. То была акция политическая — амбициозный ответ Белого дома на первый полет человека в космос. Программа обошлась в 24 миллиарда долларов.
В ходе работ по программе «Аполлон» предстояло решить множество всевозможных научно-технических задач. Прежде всего необходимо было хорошо изучить радиационную и метеорную обстановку на трассе полета, а также особенности лунной поверхности. Для этой цели американские специалисты с 1958 года запускали аппараты «Пионер», уступившие в 1961 году место новым станциям «Рейнджер». Однако до 1964 года все запуски приносили разочарование, ни один аппарат до «Рейнджера-7» не выполнил полностью свои задачи. В мае 1966 года начались исследования с помощью аппарата «Сервейор», предназначавшегося для посадки на Луну. В августе того же года был запущен первый аппарат серии «Лунар орбитер», сфотографировавший поверхность Луны с селеноцентрической орбиты для составления карт и выбора места посадки будущих экспедиций.
Под руководством известного немецкого специалиста в области ракетной техники Вернера фон Брауна были разработаны мощные ракеты-носители, способные вывести на околоземную орбиту более 100 тонн полезной нагрузки. Первый полет «Сатурна-1» состоялся 27 октября 1961 года. Сама ракета весила 512 тонн, а выводить в космос могла до 10 тонн. В 1966 году «Сатурн-1B» доставил на орбиту 18 тонн груза. Непосредственно для полета на Луну предназначалась трехступенчатая ракета-носитель «Сатурн-5». Первый запуск этой огромной, достигавшей в длину почти 111 метров, ракеты состоялся 9 ноября 1967 года. На орбиту высотой 185 километров «Сатурн-5» мог доставить 139 тонн полезного груза, а при выводе на траекторию полета к Луне — до 50 тонн. Масса кораблей «Аполлон» составляла от 42,8 до 56,8 тонн.

Космический корабль «Союз»

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
В 1960 году, на заре практического освоения космического пространства, в ОКБ под руководством Сергея Павловича Королёва были сформулированы предложения по созданию средств для орбитальной сборки. Подчеркивалось, в частности, что одна из важнейших задач — сближение и сборка космических аппаратов на орбитах искусственных спутников Земли. Отмечалось, что обслуживание постоянно действующих пилотируемых спутников (смена экипажа, доставка продовольствия, специального снаряжения и др.) связано с регулярными сближениями и стыковками на орбите, наработанный в этом деле опыт позволит в случае необходимости успешно осуществлять спасение экипажей пилотируемых спутников и космических кораблей.
Корабли «Восток» и «Восход» выполняли ограниченный круг научно-технических задач, главным образом экспериментально-исследовательских. Новые космические корабли серии «Союз» были предназначены для относительно длительных полетов, маневрирования, сближения и стыковки на околоземных орбитах.
10 марта 1962 года Королёв утверждает технический проспект, озаглавленный «Комплекс сборки космических аппаратов на орбите спутника Земли (тема "Союз")». В этом документе впервые дается обоснование возможности использования модификации космического корабля «Восток-7» с космонавтом-«монтажником» на борту для отработки стыковки и сборки на орбите. Для этого корабль предполагалось снабдить системами сближения и стыковки, а также маршевой ДУ многократного включения и системой микродвигателей причаливания и ориентации. «Восток-7» мог быть использован для сборки на орбите искусственного спутника Земли космической ракеты, состоящей из трех одинаковых ракетных блоков. С помощью такой космической ракеты предлагалось выполнить облет Луны специальным кораблем Л1 с экипажем из одного-трех человек.
Через некоторое время появился второй проспект, озаглавленный «Сборка космических аппаратов на орбите спутника Земли», утвержденный С.П. Королёвым 10 мая 1963 года. В нем тема «Союз» звучит уже четко и убедительно. Основной объект документа — комплекс, состоящий из последовательно выводимых и стыкующихся на орбите разгонных блоков кораблей-танкеров для его заправки и «Союз».
В проспекте ставились две основные задачи: отработать стыковку и сборку на орбите и облететь Луну пилотируемым аппаратом. По мнению Королёва, увязка решений по двум этим задачам обеспечивала приоритет СССР в освоении космоса.