КТО ПРИДУМАЛ РАКЕТУ?

Энциклопедии » Земля и космос
КТО ПРИДУМАЛ РАКЕТУ?

Ракета была известна давно. Очевидно, она появилась много веков назад на Востоке. Возможно, в Древнем Китае — родине пороха. Ракеты использовали во время народных празднеств, устраивали фейерверки, зажигали в небе огненные дожди, фонтаны, колеса. Ракеты применяли в военном деле. Долгое время ракета была одновременно и оружием, и игрушкой. При Петре I была создана и применялась однофунтовая сигнальная ракета "образца 1717 года", остававшаяся на вооружении до конца XIX века. Она поднималась на высоту до одного километра. Некоторые изобретатели предлагали использовать ракету для воздухоплавания. Научившись подниматься на воздушных шарах, люди были беспомощны в воздухе. Управляемый аппарат тяжелее воздуха — вот о чем мечтал революционер Н.Кибальчич в каземате Петропавловской крепости, осужденный на казнь за покушение на царя. За десять дней до смерти он завершил работу над своим изобретением и передал адвокату не просьбу о помиловании или жалобу, а "Проект воздухоплавательного прибора" (чертежи и математические расчеты ракеты.) Именно ракета, считал он, откроет человеку путь в небо.

В тюрьме перед смертью Кибальчич размышлял о том, как применить для полета энергию газов, образующихся при воспламенении взрывчатых веществ. В своих рассуждениях он пришел к идее не самолета, а именно звездолета, так как его аппарат мог двигаться и в воздухе, и в безвоздушном пространстве. Он мечтал об освобождении человека от социального гнета и от прикованности к Земле. Он был революционером и в политике, и в науке.

В своем "Проекте..." он писал: "Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении. Если мои идеи после тщательного обсуждения учеными-специалистами будут признаны осуществимыми, то я буду счастлив и спокойно встречу смерть?.

БАЙКОНУР — ГЛАВНЫЙ КОСМОДРОМ НАЧАЛА КОСМИЧЕСКОЙ ЭРЫ

Энциклопедии » Земля и космос
БАЙКОНУР — ГЛАВНЫЙ КОСМОДРОМ НАЧАЛА КОСМИЧЕСКОЙ ЭРЫ

БАЙКОНУР — ГЛАВНЫЙ КОСМОДРОМ НАЧАЛА КОСМИЧЕСКОЙ ЭРЫ


Решение о создании космодрома было принято в 1953 году, когда в нашей стране работал космодром Капустин Яр, придуманный для запусков целого ряда реактивных аппаратов, созданных под руководством С.П.Королева. На этом же космодроме осуществлены и первые запуски геофизических ракет под руководством академика А.А.Благонравова. Они дали очень многое для исследования космического пространства вплоть до высоты 400 км. Для создания первой межконтинентальной баллистической ракеты требовалась новая база, которая бы обеспечила соответствующую дальность полета. Траекторию полета следовало выбирать так, чтобы она проходила над малонаселенными пунктами с запада на восток. Энергетически выгоден запуск ракет именно в этом направлении, так как Земля своим вращением добавляет скорость. Из трех вариантов был выбран Байконур. Старт отсюда позволял осуществлять трассу длиной 6400 км через Камчатку. Строительство развернулось очень быстро. В тяжелейших условиях — температура до. +45°С, пыль, грязь, очень много змей — люди строили космодром. Подчас в жуткой жаре отказывала техника, не заводились моторы, а люди выдерживали. Требования к качеству строительства были очень высокие. Конструкции должны быть прочными и долговечными. Основным являлось сооружение пускового стартового комплекса. С него и начато было строительство, затем развернуты все работы по строительству пускового минимума, т.е. наименьшее количество сооружений и оборудования, которые необходимы для первого пуска. Сюда входят электростанция, железная и шоссейная дороги, монтажный корпус, компрессорная, стартовые устройства и т.д. Специалисты, уже имевшие опыт Капустина Яра, творили чудеса, усилия всех строителей совершили чудо. Даже Королев не поверил: "Неужели создали?! В такой короткий срок!" 15 мая 1957 года в 18 часов 50 минут был произведен старт первой межконтинентальной баллистической ракеты. Эту дату не принято отмечать. Но о ней помнят как об одной из вех отечественной космической техники. Именно к ней был приурочен запуск ракеты-носителя "Энергия", которая стартовала в этот день тридцать лет спустя. При телевизионных передачах из Байконура видно, как происходит выход ракеты из стартовых опор. Они отходят, раскрываясь, как лепестки тюльпана, которых так много весной в степи! Космодром — это не только гражданское сооружение, это полигон передовой инженерной мысли. Здесь проводятся все виды наземных и летных испытаний ракетно-космической техники. Здесь же располагаются хранилища для ракет-носителей, техники, заводы по производству компонентов криогенного топлива (здесь вырабатываются в год тысячи тонн жидкого кислорода и азота). Есть заправочные станции космических аппаратов, сложные контрольные системы оборудования, системы автоматического регулирования и управления. Все это обслуживается опытными и квалифицированными" специалистами. Люди готовят ракеты к испытаниям, "учат" их летать. В состав космодрома входят также и оборудованные поля падения. Ракеты ведь, как правило, трехступенчатые, а то и четырехступенчатые, с разгонными блоками. Их нельзя отбрасывать куда попало — есть специально отведенные места на удалении 300—400 км для первой ступени, 1200—1500 км для второй ступени. На космодроме работает метеослужба, расчетный центр, служба безопасности, анализа полученных измерений, химическая, аэродромная, автомобильная, медицинская.

Космодром — это целый комплекс, удивительный научно-технический город, где трудятся замечательные люди.

ГЕНЕРАЛЬНЫЙ КОНСТРУКТОР КОСМИЧЕСКИХ КОРАБЛЕЙ

Энциклопедии » Земля и космос
ГЕНЕРАЛЬНЫЙ КОНСТРУКТОР КОСМИЧЕСКИХ КОРАБЛЕЙ

Чтобы расчеты и формулы воплотились в космические аппараты, чтобы человек смог действительно оторваться от Земли и выйти в космическое пространство, должен был прийти генеральный конструктор космических кораблей, человек необычайной энергии, творческого и организационного таланта, координирующий работу крупнейших коллективов, создающих ракетно-космические системы. Таким конструктором был Сергей Павлович Королев. Он родился в 1906 году. Работал, чтобы кормить семью. Занимался в Киевском политехническом институте. Затем продолжил учебу в Москве в Высшем техническом училище им. Баумана и в 1929 году закончил факультет аэромеханики. Знаменитый конструктор А.Н.Туполев высоко оценил дипломный проект Королева, посвященый легкомоторным самолетам. Но мечты уносили Сергея Павловича дальше, за пределы земной атмосферы, куда путь самолетам закрыт. В 1934 году вышла книга С.П.Королева "Ракетный полет в стратосфере". Эту книгу отметил К.Э.Циолковский. В начале 30-х годов С.П.Королев возглавил группу инженеров — специалистов в области ракетного движения. Первые ракеты зарождались в конструкторских бюро на экспериментальных заводах, проходили испытания на полигонах. С именем Королева связаны все наши достижения в завоевании космоса: первый искусственный спутник, ракета, доставившая вымпел на Луну, автоматическая станция, сфотографировавшая ее обратную сторону, пилотируемые космические корабли.

Королев — "С.П.", как его дружески называли сотрудники — провожал в полет каждого космонавта и давал советы во время полета, молниеносно принимая единственно правильное решение в любой обстановке.

За 60 лет жизни замечательный ученый Королев много успел сделать не только для нашей Родины, но и для всего человечества. Обладая необыкновенным умом, смелостью, он горячо верил в беспредельные возможности человека, в то, что освоение космоса принесет людям благо и счастье.

В создании ракетно-космической техники участвуют тысячи ученых, инженеров, рабочих, масштабы работ требуют объединения усилий: людей многих областей науки и техники. Генеральный конструктор С.П.Королев умел находить способных, талантливых специалистов, умел создать творческую обстановку, работавшие с ним заражались его энергией и все силы отдавали общему делу. Всех, кто участвовал в том или ином эксперименте, Королев объединял понятием "Мы". При решении сложных, а порой совершенно новых вопросов Сергею Павловичу помогала смелая фантазия, неистребимый оптимизм и разумная осторожность. Он умел и любил рисковать, но никогда не забывал о ценности человеческой жизни, вернее, ее бесценности, так как дороже человека ничего нет.

РОССИЙСКИЙ ТЕОРЕТИК КОСМОНАВТИКИ

Энциклопедии » Земля и космос
РОССИЙСКИЙ ТЕОРЕТИК КОСМОНАВТИКИ

Ровно за сто лет до того, как над Землей появился первый искусственный спутник, в сентябре 1857 года родился Константин Эдуардович Циолковский. Работая учителем провинциальной школы, в свободное время он читал, думал, вычислял, фантазировал, мечтал о покорении человеком космоса. Своим мысленным взором он смотрел сквозь целое столетие и видел многоступенчатые ракеты, автоматическое управление космическими кораблями, солнечную систему, ориентации межпланетного корабля в космическом пространстве.

Он высказал предположение о мыслящих существах в иных мирах. Очень много интересных идей выдвинул скромный учитель из Калуги. Им придуманы газовые рули для управления ракетой в космосе и атмосфере. Работами Циолковского интересовались ученые всего мира. Ученики Циолковского и его последователи создали первые в мире космические корабли. Циолковский теоретически обосновал межпланетные путешествия и страстно верил, что его мечту осуществят другие. До Циолковского некоторые изобретатели предлагали использовать ракеты для воздухоплавания. Циолковский "научил" ракеты летать в космос. Причина движения ракеты заложена в ней самой: ее приводят в движение вытекающие из нее газы. Какую скорость должна развивать ракета, чтобы преодолеть земное тяготение и вырваться в космическое пространство? Около 8 км/с должен иметь снаряд или ракета, чтобы никогда не упасть на Землю, а стать ее искусственным спутником. При скорости 11,2 км/с ракета уйдет из поля тяготения Земли и улетит в межпланетное пространство, станет спутником Солнца. Циолковский рассчитал, сколько нужно ракете топлива. Она должна поднять себя, поднять запас топлива, грузы, приборы, людей, она должна развить необходимую скорость для отрыва от Земли. Циолковский изобрел ракетный поезд — многоступенчатую ракету. В передней ракете находятся приборы и экипаж. Ступени ракеты работают поочередно: когда топливо в одной ступени выгорит, она сбрасывается, ракета становится легче. Начинает работать вторая ступень и т.д. Передняя ракета, как по эстафете, получает скорость, набранную предыдущими ракетами. Многоступенчатые ракеты, придуманные Циолковским, работали, совершенствовались, с их полетами воплотилась в жизнь мечта гениального ученого.

ЕСЛИ ОНИ ЕСТЬ, ТО ПОХОЖИ ЛИ ОНИ НА НАС?

Энциклопедии » Земля и космос
ЕСЛИ ОНИ ЕСТЬ, ТО ПОХОЖИ ЛИ ОНИ НА НАС?

Это один из самых увлекательных вопросов для тех, кто интересуется проблемой внеземных цивилизаций. Проблема жизни и разума вне Земли связана с проблемой возникновения жизни на Земле. Закономерности происхождения земной жизни пока еще до конца не выяснены, но все-таки можно сказать, что живое вещество на нашей планете синтезировалось при благоприятных внешних условиях из органических молекул. Современные живые организмы Земли, и человек в том числе, есть результат длительной естественной эволюции живой клетки. Если подсчитать вероятность всех этих случайных обстоятельств, которые обеспечили появление человека и человеческого общества, то она окажется очень малой, ничтожно малой. В значительной степени случайно скалывались эти благоприятные для появления жизни на Земле обстоятельства. Из-за этой маловероятной случайности возникла гипотеза, что жизнь на Земле и разумная жизнь были привнесены извне. Развитие этой гипотезы увлекает и уводит в область фантастики. Наши рассуждения всегда ограничены существующим уровнем знаний. Все, что выходит за этот уровень — это догадки, гипотезы, фантазии. И все-таки похоже на то, что разумные обитатели других космических миров — существа биологические. Развитие от живой клетки до разумных существ происходит по законам существования живой материи. Транзисторы и электронные блоки, компьютерные системы разве могут соперничать с человеком, какими бы преимуществами в объеме памяти они не обладали? Да, машина обладает значительно большим объемом памяти, способна, производить миллионы операций в секунду, мгновенно просчитать множество логических вариантов, но она не способна делать научные открытия, не обладает интуицией, воображением, эмоциями...

Живой организм — биологическое существо — неразрывно связан со средой, в которой существует, он отражает свойства окружающей среды, зависит от нее. При изменении внешних условий организм должен либо измениться и приспособиться, либо погибнуть. Это закон природы. Закономерно и то, что в разных физических условиях должны возникать и развиваться разные формы жизни. Поэтому возможно существование в других космических мирах живых разумных организмов, не похожих на земные. Но с другой стороны, на вопрос: "Может ли вообще возникнуть жизнь в условиях, существенно отличающихся от земных?" — пока нет ответа. В эксперименте, проведенном на Земле, в искусственно созданных условиях, близких к условиям Луны и Марса, выживали некоторые земные организмы, но однако на самой Луне даже микроорганизмов пока не обнаружили. Поэтому мы должны отличать возникновение живого организма из неживого вещества от приспособления уже существующих организмов к изменившимся условиям. Пока у наших ученых не будет возможности изучать внеземные формы жизни, гипотеза о разнообразии живых организмов Вселенной будет иметь право на существование.

КОСМИЧЕСКИЕ ПРИШЕЛЬЦЫ: БЫЛИ ИЛИ НЕБЫЛИЦЫ?

Энциклопедии » Земля и космос
КОСМИЧЕСКИЕ ПРИШЕЛЬЦЫ: БЫЛИ ИЛИ НЕБЫЛИЦЫ?

У этой задачи два ответа:

1) пришельцы из космоса были на нашей планете,

2) никаких пришельцев не было, и все связанное с ними — сказки, небылицы.

В пользу первого ответа говорит тот факт, что Вселенная велика, в одной нашей Галактике 150 млрд. звезд, среди них немало подобных нашему Солнцу. По мнению многих ученых, есть вероятность существования планетных систем, подобных нашей Солнечной. Второму ответу подтверждением будет служить тот же самый факт: Вселенная так велика, что обитатели других цивилизаций могли до нас и не долететь. Появились сенсационные известия о корабле инопланетян и даже о контактах с "братьями по разуму". Ученые-уфологи занимаются неопознанными летающими объектами (НЛО). Гипотеза о посещении Земли пришельцами имеет право на существование, но множество "фактов", приводимых в ее пользу, часто оказываются фантазиями энтузиастов или ошибками наблюдателей. Большинство явлений, принятых за НЛО, связаны с запусками ракетной техники и высотных баллонов (шаров-зондов). Например, при запуске ракет при определенных условиях освещенности Солнцем возникают очень сложные эффекты, связанные с рассеянием света на газопылевом облаке. Это облако может принимать самые разнообразные формы. Подобные эффекты происходят на больших высотах, и при хороших погодных условиях видимость достигает тысячи километров, а у наблюдателя возникает ощущение, что "объект" где-то рядом. Иногда в сложных погодных условиях Венера и Юпитер некоторыми наблюдателями принимаются за НЛО. В принципе, какие-то неопознанные летающие объекты, могли бы быть кораблями инопланетян. Если бы контакт с ними действительно произошел, то это было бы величайшее событие в истории человечества. Но, к сожалению, для многих легковерных людей не существует разницы между понятиями "может быть" и "есть на самом деле". Чтобы не попасться на удочку мистификаторов, надо помнить драгоценное научное правило: чем больше хочешь подтверждения догадки, тем больше ищи доводов против.

В ПОИСКАХ ВНЕЗЕМНЫХ ЦИВИЛИЗАЦИЙ

Энциклопедии » Земля и космос
В ПОИСКАХ ВНЕЗЕМНЫХ ЦИВИЛИЗАЦИЙ

В ПОИСКАХ ВНЕЗЕМНЫХ ЦИВИЛИЗАЦИЙ


В распоряжении современной науки до сих пор нет никаких конкретных свидетельств не только существования в другом мире высокоразвитых цивилизаций, но даже и существования каких-либо внеземных живых организмов. Но тем не менее проблема внеземных цивилизаций уже давно поставлена, к тому были реальные предпосылки. Например, были проведены удачные эксперименты получения аминокислот, входящих в состав живых клеток, путем облучения смеси различных газов. Современная молекулярная биология решает вопросы, связанные с возникновением жизни. Открытие целого ряда новых явлений во Вселенной значительно расширило представления ученых о космических процессах и возникновении жизни на нашей планете. Где грань между живой и неживой природой? Каковы условия, при которых возникает живая клетка? Проблема происхождения жизни и связанная с ней проблема внеземных цивилизаций может быть разрешена лишь усилиями специалистов самых различных областей науки. Многие ученые склонны думать, что жизнь во Вселенной может иметь и другие формы, не похожие на земные.

Не исключена возможность возникновения жизни в межзвездной среде, где обнаружено много различных органических молекул, например, молекул оксида углерода, метилового спирта, формальдегида. Это означает, что в громадных облаках космической материи могут быть образованы и более сложные молекулы. Может быть, там даже происходит нечто подобное синтезу аминокислот. Одним словом, не исключено, что аминокислоты и белки (основа живой клетки) могут возникать не только на поверхности планет, а это намного расширяет возможности возникновения жизни. Возможно, само возникновение живого вещества и было случайным для нашей Земли, но затем в процессе дальнейшего развития — эволюции — действуют веские определенные законы, например — естественный отбор: выживают те существа, которые наилучшим образом приспособлены к данным условиям. Если этот закон применить к распространенности разумной жизни во Вселенной, то окажется, что высокоразвитые цивилизации способны преодолеть многие трудности и продлить продолжительность своего существования на практически неограченное время. Тогда в окружающей нас области Вселенной существование других цивилизаций вполне вероятно и жизнь достаточно распространенное явление во Вселенной. Обнаружить другие цивилизации можно было бы путем исследования космических радиосигналов, если инопланетные жители сами их передают, а не только находятся в ожидании "братьев по разуму". Современное человечество достигло такого уровня развития, что располагает возможностью не только искать, но и само передавать в космос такие сигналы на расстояния до 10000 световых лет. Установить двухсторонний контакт можно было бы, очевидно, только с ближними цивилизациями в пределах нашей собственной Галактики. Видимо, такие цивилизации не могли уйти намного вперед по сравнению с человечеством, иначе мы не могли бы не заметить у нас на Земле следов их деятельности. Сколько же цивилизаций может быть в нашей Галактике? Еще сравнительно недавно высказывались довольно оптимистические оценки: до нескольких тысяч. По мере расширения и углубления знаний в разных областях науки меняются и оценки. Множество специалистов считают, что в пределах нашего "звездного острова" можно ожидать всего лишь 2—3 разумные цивилизации помимо земной. Проблема внеземных цивилизаций заслуживает тщательного и всестороннего исследования, так как может оказать громадное положительное влияние на дальнейшее развитие человечества. Установление же контакта с разумными инопланетянами, конечно, будет величайшим событием в истории нашей земной цивилизации.

ЧЕРНЫЕ ДЫРЫ В КОСМОСЕ

Энциклопедии » Земля и космос
ЧЕРНЫЕ ДЫРЫ В КОСМОСЕ

ЧЕРНЫЕ ДЫРЫ В КОСМОСЕ


В природе должны существовать экзотические объекты, предсказанные в XVIII веке выдающимся французским математиком и астрономом П.Лапласом (1749—1877).

Великий ученый Альберт Эйнштейн в общей теории относительности доказал возможность существования черных дыр. И хотя они еще до сих пор не обнаружены, есть факты, подтверждающие эту гипотезу. Звезды — это эволюционирующие объекты, т.е. они находятся в постоянном изменении, развитии. Они, как и люди, рождаются, живут, умирают. И хотя за все время существования цивилизации на небе не исчезло и не появилось ни одной заметной глазу звезды (если не считать вспышек сверхновых и новых звезд), звезды не остаются неизменными. Постепенно термоядерное топливо в них выгорает и звезда "стареет". Чем больше масса звезды, тем быстрее проходит она свой жизненный путь, становится красным гигантом, а затем может превратиться в белый карлик и очень медленно остыть, или же под действием гравитационного поля сжаться до ядерной плотности, став нейтронной звездой, или же взорваться, как сверхновая, или же стать звездой-невидимкой под названием "черная дыра". Из теории относительности Эйнштейна существование этих необычных объектов следует с неизбежностью. Силы тяготения связаны с физическими свойствами самого пространства. Оказывается, любое тело не просто существует в пространстве само по себе, но изменяет "вокруг себя" его геометрию. В повседневной жизни мы не замечаем искривленности пространства, так как приходится иметь дело со сравнительно небольшими массами, но в космосе объекты могут иметь колоссальную массу, а, следовательно, и мощное гравитационное поле, искривлять пространство подобно тому, как массивный шар прогибает натянутую сетку.

На такой поверхности какой-нибудь легкий шар будет скатываться в направлении к тяжелому, как бы притягиваясь к нему. Теория предсказала, а наблюдения подтвердили, что лучи звезд искривляются Солнцем. Астрономы наблюдают это во время полных солнечных затмений. Мощное гравитационное поле массивной звезды так сильно сжимает ее вещество, что не только вещество, но даже и электромагнитное излучение (радиоволны) не могут выйти из звезды, и она перестает быть видимой. Все — вещество, любой вид излучения — будет как бы проваливаться в невидимую дыру. Поистине экзотика! Ученые рассчитали гравитационный радиус, при котором небесное тело может превратиться в черную дыру. Для звезды типа нашего Солнца он составляет 3 км. В черную дыру могут превратиться массивные звезды (крупнее нашего Солнца во много раз!) при их катастрофическом сжатии — коллапсе. Звезда-коллапсар, т.е. черная дыра, улавливает излучение извне, но сама не выпускает наружу никаких излучений. Пространство и время в области коллапсара приобретают удивительные свойства: пространство стягивается в точку, т.е. фактически не существует, а время также перестает существовать. Для наблюдателя, оказавшегося бы на "краю" черной дыры, нет ни прошлого, ни настоящего, ни будущего. Гипотеза о черных дырах требует дальнейшей разработки, уточнения, новых фактов, подтверждающих или, может быть, опровергающих ее.

ЧТО ТАКОЕ КОСМИЧЕСКИЕ ЛУЧИ?

Энциклопедии » Земля и космос
ЧТО ТАКОЕ КОСМИЧЕСКИЕ ЛУЧИ?

Мировое пространство пронизывают потоки космического излучения — это частицы атомов, которые путешествуют вне земной атмосферы со скоростью, близкой к световой. Проникая в земную атмосферу, они сталкиваются с атомами воздуха в результате чего создаются новые частицы, также с огромными скоростями. Эти частицы вызывают появление электрического заряда в любом веществе и в любом месте на Земле и над Землей, днем и ночью (ученые сделали вывод, что эта радиация, т.е. излучение, не зависит от Солнца). Космические аппараты регистрируют это излучение и в космосе, поэтому его назвали космическими лучами. Космические лучи бомбардируют нашу Землю уже в течение миллиардов лет, и их воздействие не оказало вредного влияния на жизнь на Земле.

Науке пока неизвестна причина происхождения космических лучей. Физики, изучающие свойства материи, пытаются уловить частицы, прилетающие к нам из космоса, с помощью специальных фотопластинок с толстослойными эмульсиями. Пронизывая такие эмульсии, космические лучи оставляют на них свои следы — треки. По характеру трека ученые могут многое узнать о пролетевшей частице. Из-за того, что частицы не могут пробиться сквозь толщу земной атмосферы, физики устанавливают свои приборы на самолетах, шарах-зондах, спутниках. Именно космические аппараты могут произвести в изучении космических лучей настоящий переворот. Они сделали доступной для исследователей "лабораторию", где регистрация космических лучей ведется уже на протяжении миллиардов лет. Эта "лаборатория" — Луна. Ее поверхность, не защищенная атмосферой, подвергается непрерывной "обработке" частицами космических лучей.

И лунные породы хранят следы этих ударов. Изучение таких следов уже началось. С Луны на Землю доставили образцы лунного грунта. После специальной обработки в кристаллах лунного вещества обнаружили необычно длинные треки частиц космического излучения. Несмотря на то, что наилучшие условия для исследования космических лучей существуют на нашей древней спутнице — Луне, ученые ведут поиски их следов в различных средах: в земной коре, в арктических льдах, в древних отложениях, на дне океанов и даже в старинных стеклах и зеркалах...

ЧТО ТАКОЕ КВАЗАРЫ?

Энциклопедии » Земля и космос
ЧТО ТАКОЕ КВАЗАРЫ?

ЧТО ТАКОЕ КВАЗАРЫ?


Квазары — наиболее далекие из доступных наблюдениям объекты Вселенной. Расстояние до некоторых, квазаров превышают 10 млрд. световых лет. Их название образовано из слов "квазизвездные радиоисточники" (от лат. квази — якобы, как будто). Квазары обладают гигантской светимостью.

Наиболее удивительные особенности этих объектов в том, что они небольшие по размерам, но выделяют поистине чудовищную энергию во всех областях спектра электромагнитных волн, особенно в инфракрасной области. Ученые определили, что один квазар излучает энергии больше, чем вся наша Галактика, примерно в 10000 раз. По своим свойствам квазары похожи на активные ядра галактик. Пока до сих пор точно не установлены происхождение и источники энергии квазаров, изменения их яркости. Многие астрофизики считают, что светимость этих объектов поддерживается не термоядерными источниками. Энергия квазаров — это гравитационная энергия, которая выделяется за счет катастрофического сжатия (коллапса), происходящего в ядре галактики. Много существует гипотез и предположений относительно природы этих объектов. Вселенная поставила перед пытливым умом человека, может быть, самую сложную из своих загадок. Ее решение когда-нибудь обязательно будет получено, и человек познает новые законы превращения материи.

КАК УСТАНОВИЛИ ПОРЯДОК В ЗВЕЗДНОМ ХОЗЯЙСТВЕ?

Энциклопедии » Земля и космос
КАК УСТАНОВИЛИ ПОРЯДОК В ЗВЕЗДНОМ ХОЗЯЙСТВЕ?

В многообразии бесчисленного множества звезд астрономы установили порядок, разбив звезды на классы по их светимости. Звезды, излучающие свет больше нашего Солнца в тысячи раз, называются гигантами. Звезды с малой светимостью называют карликами. Наше Солнце по своей светимости и по размерам — средняя звезда. По цвету звезды тоже отличаются друг от друга, а цвет звезды связан с температурой ее поверхности. По спектру звезды, как по паспорту, можно определить ее характерные особенности. Так, наше Солнце и подобная ему звезд Капелла (альфа Возничего) относятся к одному классу. Они обе желтого цвета, имеют температуру поверхности 6000°, в их спектрах присутствуют линии магния, натрия, железа. Звезды Антарес, Бетельгейзе — красные ги-. ганты с температурой поверхности 3000% в их спектрах выделяются сильные полосы оксида титана. Звезды Вега, Сириус — белые, с температурой поверхности 10 000°, имеют спектры с наибольшей интенсивностью линий водорода. Голубовато-белая звезда с наибольшей звездной температурой 30 000° — звезда (греч. "лямбда") Ориона. Сопоставление светимостей звезд с их спектральными классами позволило установить некий порядок во множестве звезд. Ученые Герцшпругн и Рессел в 1905 — 1913 годах составили диаграмму для звезд и оказалось, что звезды на ней располагаются не хаотично, а в определеном порядке, образуя несколько последовательностей. Гиганты и сверхгиганты в правом верхнем углу, карлики в левом нижнем, большинство звезд расположились вдоль наклонной линии, идущей слева направо сверху вниз. Это главная последовательность. Из-за своей большой светимости звезды-гиганты и сверхгиганты видны с таких колоссальных расстояний, с которых звезды-карлики были бы просто не видны. Из диаграммы следует, что в природе значительно больше звезд средней светимости и карликов, чем гигантов и тем более сверхгигантов. Диаграмма помогает разобраться в характеристиках звезд, она также отражает пути развития звезд, их эволюцию.

КАК АСТРОНОМЫ "ПРИРУЧИЛИ" РАДУГУ?

Энциклопедии » Земля и космос
КАК АСТРОНОМЫ "ПРИРУЧИЛИ" РАДУГУ?

После того как И. Ньютон в 1665 году получил впервые искусственную радугу — спектр и доказал, что лучи разного цвета (т.е. разной длины волны) преломляются в стеклянной призме по-разному: фиолетовые — больше, а красные — меньше, немецкий ученый Й. Фраунгофер открыл в спектре Солнца около 600 темных линий.

Он впервые наблюдал и зарисовал их в 1814 году. В 1859 году немецкий физик Г. Кирхгоф открыл законы, положившие начало спектральному анализу. Большая часть всех астрономических исследований соединена со спектральным анализом Солнца, планет и звезд. Провести спектральный анализ можно с помощью спектроскопа.

Спектроскоп состоит из двух трубок и трехгранной призмы, помещенной между ними. Через первую трубку поступает свет от объекта, на конце второй трубки помещают окуляр и наблюдают спектр. Если окуляр заменить фотопластинкой, то получим . спектрограмму, а прибор спектроскоп станет называться спектрографом.

Звезды состоят из светящегося разреженного газа. В их спектрах имеется множество отдельных узких разноцветных линий на черном фоне. По виду спектра ученые определяют, из каких веществ состоят звезды, по расположению спектральных линий можно определить температуру звезды. Если спектральные линии раздваиваются, то можно обнаружить двойные звезды. Если спектральные линии смещаются, то можно определить скорость светила.

Вот каким важным помощником астрономам стала "прирученная радуга".