БАЛЛИСТИЧЕСКАЯ РАКЕТА

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
За свою почти тысячелетнюю историю развития ракетная техника прошла гигантский путь от примитивных "огненных стрел" до мощнейших современных ракет-носителей, способных выводить на орбиту многотонные космические аппараты. Изобретена же ракета была в Китае. Первые документальные сведения о ее боевом применении связаны с осадой монголами китайского города Пиен-Кинга в 1232 году. Китайские ракеты, запускавшиеся тогда из крепости и наводившие страх на монгольскую конницу, представляли собой небольшие мешочки, набитые порохом и привязанные к стреле обычного лука.

Вслед за китайцами зажигательные ракеты начали использовать индийцы и арабы, но с распространением огнестрельного оружия ракеты потеряли свое значение и на много веков были вытеснены из широкого военного употребления.

Вновь интерес к ракете как к боевому оружию пробудился в XIX веке. В 1804 году значительные усовершенствования в конструкцию ракеты внес английский офицер Уильям Конгрев, который впервые в Европе сумел наладить массовое производство боевых ракет. Масса его реактивных снарядов достигала 20 кг, а дальность полета — 3 км. При надлежащей сноровке ими можно было поражать цели на расстоянии до 1000 м. В 1807 году англичане широко применили это оружие при бомбардировке Копенгагена. В короткий срок по городу было выпущено более 25 тысяч ракет, в результате чего город был почти полностью сожжен. Но вскоре развитие нарезного огнестрельного оружия сделало применение ракет малоэффективным. Во второй половине XIX века они были сняты с вооружения в большинстве государств. Вновь почти на сто лет ракета получила отставку.

АВТОПИЛОТ

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Автопилот представляет собой совокупность нескольких устройств, совместная работа которых дает возможность автоматически, без участия человека, управлять движением самолета или ракеты. Создание автопилота составило важную эпоху в истории авиации, так как сделало воздушные полеты гораздо более безопасными. Что же касается ракетной техники, где все полеты осуществляются в беспилотном режиме, то без надежных автоматических систем управления эта техника вообще не могла бы развиваться. Главная идея автоматического пилотирования заключается в том, что автопилот строго поддерживает правильную ориентацию перемещающегося в пространстве аппарата. Благодаря этому аппарат, во-первых, удерживается в воздухе и не падает, а во-вторых, не сбивается с заданного курса, поскольку от правильной ориентации прежде всего и зависит траектория его полета. В свою очередь, ориентация аппарата в пространстве определяется тремя углами. Во-первых, это угол тангажа, то есть угол между продольной осью аппарата и плоскостью земли (или, как говорят, плоскостью горизонта). Отслеживание этого угла позволяет самолету сохранять продольную устойчивость — не "клевать носом", а ракете, совершающей полет по баллистической траектории, — точнее поразить цель. Во-вторых, это угол рысканья, то есть угол между продольной осью аппарата и плоскостью полета (так мы назовем плоскость, перпендикулярную плоскости горизонта и проходящую через точку старта и точку цели). Угол рысканья указывает на отклонение аппарата от заданного курса. И, в-третьих, это углом крена, то есть угол, который возникает при повороте корпуса аппарата вокруг его продольной оси. Своевременное исправление крена позволяет самолету сохранять поперечную устойчивость и гасит беспорядочное вращение ракеты. Автоматическое управление аппаратом было бы невозможно, если бы не существовало надежного и простого способа определения этих углов. К счастью, такой способ есть, и он основан на свойстве быстро вращающегося гироскопа сохранять неизменным в пространстве положение своей оси.

ТРАНЗИСТОР

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Изобретение в конце 40-х годов XX века транзистора стало одной из крупнейших вех в истории электроники. Электронные лампы, которые до этого в течение долгого времени были непременным и главнейшим элементом всех радио- и электронных устройств, имели много недостатков. По мере усложнения радиоаппаратуры и повышения общих требований к ней, эти недостатки ощущались все острее. К ним нужно отнести прежде всего механическую непрочность ламп, малый срок их службы, большие габариты, невысокий КПД из-за больших тепловых потерь на аноде. Поэтому, когда на смену вакуумным лампам во второй половине XX века пришли полупроводниковые элементы, не обладавшие ни одним из перечисленных изъянов, в радиотехнике и электронике произошел настоящий переворот.

Надо сказать, что полупроводники далеко не сразу открыли перед человеком свои замечательные свойства. Долгое время в электротехнике использовались исключительно проводники и диэлектрики. Большая группа материалов, занимавших промежуточное положение между ними, не находила никакого применения, и лишь отдельные исследователи, изучая природу электричества, время от времени проявляли интерес к их электрическим свойствам. Так, в 1874 году Браун обнаружил явление выпрямления тока в месте контакта свинца и пирита и создал первый кристаллический детектор. Другими исследователями было установлено, что существенное влияние на проводимость полупроводников оказывают содержащиеся в них примеси. Например, Беддекер в 1907 году обнаружил, что проводимость йодистой меди возрастает в 24 раза при наличии примеси йода, который сам по себе не является проводником.

ВЫЧИСЛИТЕЛЬНАЯ МАШИНА

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Механизация и машинизация вычислительных операций — одно из основополагающих технических достижений второй трети XX века. Подобно тому, как появление первых прядильных машин послужило началом великого промышленного переворота XVIII–XIX веков, создание электронной вычислительной машины стало предвестником грандиозной научно-технической и информационной революции второй половины XX столетия. Этому важному событию предшествовала длинная предыстория. Первые попытки собрать счетную машину предпринимались еще в XVII веке, а простейшие вычислительные приспособления, типа абака и счет, появились еще раньше — в древности и средневековье.

Хотя автоматическое вычислительное устройство относится к роду машин, его нельзя поставить в один ряд с промышленными машинами, скажем, с токарным или ткацким станком, ведь в отличие от них оно оперирует не физическим материалом (нитями или деревянными заготовками), а идеальными, не существующими в природе числами. Поэтому перед создателем любой вычислительной машины (будь то простейший арифмометр или новейший суперкомпьютер) стоят специфические проблемы, не возникающие у изобретателей в других областях техники. Их можно сформулировать следующим образом: 1. Как физически (предметно) представить числа в машине? 2. Как осуществить ввод исходных числовых данных? 3. Каким образом смоделировать выполнение арифметических операций? 4. Как представить вычислителю введенные исходные данные и результаты вычислений?

ВЕРТОЛЕТ

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
В течение почти сорока лет после своего появления самолет безраздельно господствовал в воздухе. За это время многократно возросли скорость и грузоподъемность крылатых машин, которые из неуклюжих фанерных "этажерок" превратились в мощных реактивных красавцев, воплощавшие в себе самые передовые технические достижения человеческой мысли. Однако при всех своих достоинствах любой самолет имеет один важный недостаток — для того чтобы оставаться в воздухе, он должен постоянно и с достаточно большой скоростью перемещаться в горизонтальной плоскости, ведь подъемная сила его крыльев напрямую зависит от скорости движения. Отсюда необходимость разбега при взлете и пробега при посадке, которые приковывают самолет к аэродрому.

ТУРБОРЕАКТИВНЫЙ САМОЛЕТ

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Турбореактивная авиация зародилась в годы Второй мировой войны, когда был достигнут предел совершенства прежних винтомоторных самолетов, оснащенных двигателями внутреннего сгорания. С каждым годом гонка за скоростью становилась все труднее, поскольку даже незначительный ее прирост требовал сотен добавочных лошадиных сил мощности двигателя и автоматически приводил к утяжелению самолета. В среднем, увеличение мощности на 1 л.с. вело за собой увеличение массы двигательной установки (самого двигателя, винта и вспомогательных средств) в среднем на 1 кг. Простые расчеты показывали, что создать винтомоторный самолет-истребитель со скоростью порядка 1000 км/ч практически невозможно. Необходимая для этого мощность двигателя в 12000 лошадиных сил могла быть достигнута только при весе мотора порядка 6000 кг. В перспективе выходило, что дальнейший рост скорости приведет к вырождению боевых самолетов, превратит их в аппараты, способные носить лишь самих себя. Для оружия, радиооборудования, брони и запаса горючего на борту уже не оставалось места. Но даже такой ценой невозможно было получить большого прироста скорости. Более тяжелый мотор увеличивал общий вес машины, что заставляло увеличивать площадь крыла, это вело к возрастанию их аэродинамического сопротивления, для преодоления которого необходимо было повысить мощность двигателя. Таким образом, круг замыкался и скорость порядка 850 км/ч оказывалась предельно возможной для самолета с поршневым двигателем. Выход из этой порочной ситуации мог быть только один — требовалось создать принципиально новую конструкцию авиационного двигателя, что и было сделано, когда на смену поршневым самолетам пришли турбореактивные.

АТОМНАЯ БОМБА

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Мир атома настолько фантастичен, что для его понимания требуется коренная ломка привычных понятий о пространстве и времени. Атомы так малы, что если бы каплю воды можно было увеличить до размеров Земли, то каждый атом в этой капле был бы меньше апельсина. В самом деле, одна капля воды состоит из 6000 миллиардов миллиардов (6000000000000000000000) атомов водорода и кислорода. И тем не менее, несмотря на свои микроскопические размеры, атом имеет строение до некоторой степени сходное со строением нашей солнечной системы. В его непостижимо малом центре, радиус которого менее одной триллионной сантиметра, находится относительно огромное "солнце" — ядро атома. Вокруг этого атомного "солнца" вращаются крохотные "планеты" — электроны. Ядро состоит из двух основных строительных кирпичиков Вселенной — протонов и нейтронов (они имеют объединяющее название — нуклоны). Электрон и протон — заряженные частицы, причем количество заряда в каждом из них совершенно одинаково, однако заряды различаются по знаку: протон всегда заряжен положительно, а электрон — отрицательно. Нейтрон не несет электрического заряда и вследствие этого имеет очень большую проницаемость.

ПЕНИЦИЛЛИН

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Антибиотики — одно из замечательнейших изобретений XX века в области медицины. Современные люди далеко не всегда отдают себе отчет в том, сколь многим они обязаны этим лечебным препаратам. Человечество вообще очень быстро привыкает к поразительным достижениям своей науки, и порой требуется сделать некоторое усилие для того, чтобы представить себе жизнь такой, какой она была, к примеру, до изобретения телевизора, радио или паровоза. Так же быстро вошло в нашу жизнь огромное семейство разнообразных антибиотиков, первым из которых был пенициллин. Сегодня нам кажется удивительным, что еще в 30-х годах XX столетия ежегодно десятки тысяч людей умирали от дизентерии, что воспаление легких во многих случаях кончалось смертельным исходом, что сепсис был настоящим бичом всех хирургических больных, которые во множестве гибли от заражения крови, что тиф считался опаснейшей и трудноизлечимой болезнью, а легочная чума неизбежно вела больного к смерти. Все эти страшные болезни (и многие другие, прежде неизлечимые, например, туберкулез) были побеждены антибиотиками.

МАГНИТОФОН

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Прародитель магнитофона — телеграфон — был изобретен датским физиком Вальдемаром Поульсеном. В 1898 году Поульсен создал устройство, использующее явление остаточного намагничивания и преобразующее звуковые волны в магнитные импульсы, которые записывались на тонкой стальной проволоке. На входе телеграфона подключался источник звука — микрофон. Ток с него подавался на электромагнит особой формы. Создаваемое электромагнитом магнитное поле намагничивало стальную проволоку, которая с определенной скоростью двигалась мимо магнита. В такт передаваемому звуку снимаемый с микрофона ток увеличивался или уменьшался, а следовательно, увеличивалась или уменьшалась напряженность магнитного поля, создаваемого записывающим магнитом.

Для воспроизведения фонограммы проволоку пропускали мимо магнита воспроизведения. В процессе движения силовые линии магнитного поля фонограммы пересекали витки катушки, в которых вследствие закона электромагнитной индукции возникал электрический ток, соответствующий записанным на проволоку звукам. Эти слабые электрические импульсы преобразовывались в телефоне в звуковые волны. Их прослушивали без усилителя с помощью наушников. Качество звука было очень низким, и телеграфон не получил широкого распространения.

РАДАР

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Одной из важнейших областей применения радио стала радиолокация, то есть использование радиоволн для определения местонахождения невидимой цели (а также скорости ее движения). Физической основой радиолокации является способность радиоволн отражаться (рассеиваться) от объектов, электрические свойства которых отличаются от электрических свойств окружающей среды.

Еще в 1886 году Генрих Герц обнаружил, что радиоволны способны отражаться металлическими и диэлектрическими телами, а в 1897 году, работая со своим радиопередатчиком, Попов открыл, что радиоволны отражаются от металлических частей кораблей и их корпуса, однако ни тот ни другой не стали глубоко изучать это явление.

ТЕЛЕВИДЕНИЕ

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Телевидение является, быть может, одним из самых замечательных изобретений XX века и наравне с автомобилем, самолетом, компьютером, ядерным реактором заслуживает права на эпитеты "величайшее", "главнейшее", "чудесное" и "невероятное". Оно настолько глубоко проникло сейчас во все сферы нашего бытия, настолько тесно связано с жизнью каждого человека, что без телевизионного экрана уже невозможно представить себе ни современную технику, ни современную цивилизацию.

Как и любое сложное техническое творение, телевидение появилось и развилось в совершенную систему благодаря усилиям многих и многих изобретателей. В короткой главе, конечно, трудно рассказать обо всех, кто в той или иной мере приложил свои руки и ум к созданию телевизионной техники. Поэтому мы остановимся только на самых важных и значительных моментах истории ее возникновения.

Ранним предшественником телевидения следует считать копирующий телеграф Александра Бена, на который он получил патент в 1843 году. Основу отправляющего и принимающего аппаратов составляли здесь сургучно-металлические пластины, устроенные особым образом. Для их изготовления Бен брал изолированную проволоку, резал ее на куски длиной 2,5 см и плотно набивал ими прямоугольную раму, так чтобы отрезки проволоки были параллельны друг другу, а их торцы располагались в двух плоскостях. Затем он заливал рамку жидким сургучом, остужал и полировал ее с обеих сторон до получения гладких диэлектрических поверхностей с металлическими вкраплениями.

СИНТЕТИЧЕСКИЙ КАУЧУК

Энциклопедии » 100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ
Европа впервые узнала о каучуке в XVI веке. Христофор Колумб привез его из Америки вместе со многими другими диковинками. Во время стоянки кораблей у острова Гаити Колумб и его спутники наблюдали игры туземцев в мяч, сделанный из какого-то упругого материала, совершенно неизвестного в Европе. Мячи легко подпрыгивали при ударе о землю, сжимались и снова восстанавливали первоначальную форму. Возвращаясь в Испанию, Колумб взял с собой образцы этого чудесного материала, который и был в дальнейшем известен в Старом Свете под названием "каучук". В переводе с индейского "каучук" означает "слезы дерева". Как стало известно позже, он представлял собой сок, собираемый из надрезов коры тропического дерева — бразильской гевеи. Его брали от дерева, когда гевее исполнялось семь лет: на высоте полметра делали надрез на коре, и когда из-под нее начинал течь белый, как молоко, сок, собирали его в подвешенные чашечки, а потом сливали в большой сосуд. На воздухе сок сравнительно быстро свертывался и превращался в темный смолообразный продукт — каучук.