ВЕЩЕСТВА ОРГАНИЗМА
В фантастическом рассказе американского писателя Артура Порджесса крошечный божок Йип хотел отблагодарить героя рассказа за оказанную услугу, выполнив любую его просьбу. Но божок был очень мал, и стоимость награды не могла превышать двух долларов. В конце концов Йип помог герою покорить сердце любимой девушки. Причём главное условие не было нарушено — ведь, как утверждает писатель, «стоимость всех химических веществ, входящих в состав организма человека весом около 70 кг, составляет 1 доллар 98 центов».
В организме человека, весящего 70 кг, — 45,5 кг кислорода, 12,6 кг углерода, 7 кг водорода, 2,1 кг азота, 1,4 кг кальция, 700 г фосфора. Всех остальных элементов, вместе взятых (в основном калия, серы, натрия, хлора, магния, железа и цинка), — около 700 г. Вот всё это «богатство» и стоило, по подсчётам писателя, 1 доллар 98 центов.
Самый важный из перечисленных «элементов жизни» — углерод. Углерод — основа жизни. Органические вещества — это всегда соединения углерода. Атомы углерода обладают уникальной способностью образовывать с другими атомами углерода цепи и кольца различной длины. Отсюда бесконечное разнообразие соединений углерода.
А всего в живых клетках можно найти около 70 химических элементов таблицы Менделеева. Среди них имеются даже такие ядовитые и экзотические, как олово, свинец, мышьяк, золото.
Элементы, которые содержатся в организме в количестве нескольких граммов или долей грамма, называют микроэлементами. К примеру, железа в организме человека всего 4—5 г. Этого количества металла хватило бы разве что на один гвоздь среднего размера. Но благодаря железу работает, например, гемоглобин крови, переносящий кислород. Иода в организме содержится ещё меньше — сотые доли грамма. Но при его отсутствии у человека развивается серьёзное заболевание — зоб (см. раздел данной статьи «Гормоны»).
Для тех наших читателей, кому «стоимость человека», подсчитанная американским писателем, показалась возмутительно низкой, мы можем привести возражение профессора Йельского университета Г. Моровица против этого подсчёта. Он заметил, что подсчитывать надо стоимость не элементов, входящих в состав организма (углерода, кислорода и т. д.), а сложных органических соединений (белков, углеводов и др.). При таком подсчёте стоимость уже только одних гормонов человека (о которых рассказано ниже) составит миллионы долларов — целое состояние!
СОЛИ. Помимо воды, важнейшие из неорганических веществ живого организма — минеральные соли. Из нерастворимых солей строятся кости позвоночных животных (фосфат кальция), раковины моллюсков, оболочка птичьих яиц (карбонат кальция). Растворённые соли в каждой клетке составляют 1% от её массы. Роль их в жизнедеятельности клетки чрезвычайно многообразна.
Самая известная соль — поваренная, хлористый натрий. Гулливер, герой знаменитого произведения Джонатана Свифта, в одном из своих путешествий оказался без поваренной соли. Он рассказывал: «Сначала я очень болезненно ощущал отсутствие соли, но скоро привык обходиться без неё, и я убеждён, что распространённое употребление этого вещества есть результат невоздержанности. Ведь мы не знаем ни одного животного, которое любило бы соль».
Однако Гулливер ошибался. Травоядные животные постоянно испытывают солевой голод и жадно слизывают соль всюду, где находят. А вот плотоядные животные, действительно, получают достаточно поваренной соли с поедаемым ими мясом.
Точно так же питающиеся мясом и рыбой эскимосы и чукчи прекрасно обходятся без соли. Помните реакцию на солёную пищу персонажа романа Даниэля Дефо «Приключения Робинзона Крузо» — Пятницы, никогда не пробовавшего соли? «Он удивился, зачем я ем суп и мясо с солью. Он стал показывать мне знаками, что с солью не вкусно. Взяв в рот щепотку соли, он принялся отплёвываться и сделал вид, что его тошнит от неё, а потом выполоскал рот водой. ...Лишь долгое время спустя он начал класть соль в кушанье, да и то немного». Вероятно, Пятница до встречи с Робинзоном питался в основном животной пищей.
Надо сказать, что поваренная соль сыграла большую роль в истории человечества: служила заменителем денег, являлась причиной «соляных бунтов» (Московский соляной бунт 1648 г., вызванный тем, что правительство подняло налог на соль; подобные бунты прокатились тогда по многим городам России) и «соляных походов протеста» (в Индии в начале XX в. — когда в знак неповиновения английским властям, обладавшим монополией на производство соли, её выпаривали из морской воды).
Соль необходима живым организмам. В то же время избыток соли вреден. Увлекаясь такими продуктами, как соленья, сельдь, колбасы, люди вводят в организм слишком много соли. В сутки организму необходимо 8—9 г соли, но человек потребляет обычно вдвое большее её количество. Это приводит к повышенному кровяному давлению (гипертонии). Япония, где каждый житель потребляет около 30 г соли в день, держит первенство по числу больных этой болезнью.
ВОДА
Леонардо да Винчи назвал воду «соком жизни» на Земле. Действительно, всё живое в среднем на 80% состоит из этого неорганического вещества (человек — на 60%). Медузы состоят из воды на 95%, клетки мозга человека — на 85%, кровь — на 80%, клетки костной ткани — на 20%. Потеря воды в количестве 1% от веса тела вызывает сильную жажду. Если потеря воды в 10 раз больше (т. е. составляет 10% от веса тела), это может привести к смерти.
Почти все химические реакции в клетке идут в водной среде. Без воды, этого универсального растворителя, они были бы невозможны.
Кроме того, испаряясь, вода охлаждает организмы обитателей суши. Если бы человек не испарял пот, то после часа напряжённой физической работы или игры в футбол температура его тела подскочила бы градусов до сорока шести!
Писатель Антуан де Сент-Экзюпери так сформулировал мысль о соотношении воды и жизни: «Вода! Ты не просто необходима для жизни, ты и есть сама жизнь».
И всё-таки некоторые учёные считают, что жизнь возможна не только там, где есть вода. В доказательство они приводят тот факт, что многие белки-ферменты земных организмов (см. раздел «Белки» в статье «Вещества организма») прекрасно работают в других средах, например в уксусной кислоте, этиловом спирте.
ИЗ ИСТОРИИ ГИГИЕНЫ
Ещё в незапамятные времена люди поняли, что вода великолепно помогает поддерживать чистоту тела и уберечься от многих болезней. Но гигиена переживала в разные эпохи и хорошие, и плохие времена. В Древнем Риме бани (термы) помимо прямого назначения служили чем-то вроде клубов и пользовались большой популярностью. Правитель, желавший оставить по себе добрую память, строил общественные бани. А богатые римляне имели домашние ванные комнаты. По водопроводу подавалась горячая, холодная и тёплая вода.
До XIII в. в Европе сохранялись эти традиции отношения к воде и гигиене. Встав утром, обеспеченные люди имели обыкновение принимать ванну. Подлинное «средневековье» в этой сфере наступило с XV в., с изобретением ночного белья. Традиция утренней ванны отошла в прошлое: люди только переоблачались из ночного в дневное платье.
Закрывались общественные бани. Даже перед едой руки уже не мыли. В одном из учебников хороших манер тех времён давался совет: «Руки и лицо мыть почти ежедневно». Французский «король-солнце» Людовик XIV, хотя и имел собственную ванну, пользовался ею только при болезни.
Европейский горожанин в среднем расходовал в день на мытьё, стирку, приготовление пищи около 20 л воды. Для сравнения скажем, что современный человек использует в день в среднем 300—400 л воды. И это лишь необходимый минимум!
Возрождение гигиены наступило только в XVIII в. Но зато сегодня практически во всех странах признано, что вода, гигиена и здоровье — вещи, неотделимые друг от друга.
ОБМЕН ВЕЩЕСТВ
И живые существа, и неживые предметы устойчивы и могут долго сохраняться неизменными. Но причины этой устойчивости разные. Автомобиль прочен, т. к. он состоит из металла. Мельчайшие частицы — атомы — «держатся» друг за друга и не дают автомобилю разрушиться. При этом и автомобиль, и камень, и все другие неживые предметы в продолжение своего существования состоят в основном из одних и тех же атомов.
Иное дело — живой организм. Человеческий организм, как и организмы всех животных и растений, постоянно себя перестраивает. Из различных питательных веществ, содержащихся в пище, — белков, жиров и углеводов — живые существа строят свои клетки. Вещества, не нужные организму, он выделяет в окружающую среду. Эти явления и называются обменом веществ. За 8 лет состав атомов человека почти полностью меняется, но при этом каждый из конкретных людей, как мы знаем, остаётся самим собой. За всю жизнь человека через его организм проходит 75 т воды, 17 т углеводов, 2,5 т белков. Постоянная «лепка» организмом самого себя называется пластическим обменом (от греческого «пластикос» — лепной).
Таким образом, живое существо правильнее было бы сравнивать не с предметом (например, камнем), а скорее с постоянным процессом — как, например, падение потока воды в водопаде.
Чтобы автомобиль ехал, в нём сжигается бензин. Чтобы работали заводы, также нужно сжигать топливо. Устойчивость живых организмов основывается на постоянном «ремонте». Но и для ремонта нужна энергия. Откуда же организм берёт энергию? В любом организме тоже «сжигаются» сложные органические вещества пищи, только сжигаются без огня. В отличие от пластического это — энергетический обмен.
При горении вещество соединяется с кислородом воздуха. В химии этот процесс называется окислением. Особые белки —ферменты (см. раздел «Белки»), которые есть в любом организме, могут окислять вещества без пламени, и около 40% выделяемой энергии используется на нужды организма. Для сравнения напомним: в паровом двигателе с пользой применяется около 10% энергии, а в двигателе автомобиля — около 30%.
Организмы, которые «сжигают» запасы, созданные другими живыми организмами, называются гетеротрофными, т. е. поедающими других. Это все животные, грибы и большинство бактерий. Человек — тоже гетеротроф.
Но если бы все организмы только «сжигали» органические вещества, эти вещества скоро кончились бы и жизнь стала бы невозможна. Таким образом, жизнь на нашей планете существует только потому, что некоторые организмы научились получать органические вещества из неорганических. Это — растения и часть бактерий. Они называются автотрофами.
Каждый может провести несложный эксперимент: вырастить в горшке с землёй растение, а потом сравнить первоначальный вес земли, её вес в конце опыта и вес самого растения. Даже если растение весит несколько килограммов, получится, что вес земли изменился довольно мало. Откуда же взялся лишний вес растения? Оказывается, из воздуха и воды, которой поливали растение.
С помощью фотосинтеза (см. ст. «Фотосинтез») зелёные растения производят «чудесное превращение»: соединяют углекислый газ воздуха и воду, а получают сахара, или, как их называют, углеводы (о которых рассказано ниже), и, кроме того, выделяют кислород. Для этого им нужен только солнечный свет.
И всё же, если бы не гетеротрофы, жизнь на Земле тоже не смогла бы существовать. Представим себе, что бы произошло, если бы в какой-то момент в мире из живых организмов остались только автотрофы — зелёные растения. Умершие растения лежали бы веками, не разлагаясь: «переварить» их было бы некому. Очень скоро растения полностью израсходовали бы углекислый газ, содержащийся в атмосфере, превратив его в органические вещества. Солнце продолжало бы светить, но растениям уже не из чего было бы строить дальше свои организмы. И со смертью последнего из них жизнь на Земле прекратилась бы.
К счастью, этого никогда не случается, т. к. обилие пищи тут же привлекает животных, грибы и бактерии. Благодаря им через некоторое время мёртвое органическое вещество снова превращается в воду и углекислый газ, а в землю поступают минеральные соли, так необходимые растениям. В итоге всех этих превращений растения снова создают пищу для всех, а животные, грибы и бактерии разлагают её снова до простых неорганических веществ. Весь углекислый газ атмосферы каждые 300 лет проходит через живые организмы. А «полный оборот» атмосферного кислорода длится 2 тыс. лет. Благодаря этому великому круговороту на Земле и поддерживается жизнь.
Трудно себе представить какой-либо процесс на Земле, в котором не участвовали бы живые организмы. Их обмен веществ создал кислородную атмосферу, управлял климатом, формировал облик нашей планеты.
ОБ АСИММЕТРИИ ЖИВОГО
Ещё немецкий философ Иммануил Кант заметил: «Что может быть больше похоже на мою руку или на моё ухо, чем их собственное отражение в зеркале? И всё же я не могу поставить ту руку, которую я вижу в зеркале, на место оригинала».
На аналогичное явление обратили внимание и поэты:
Я на правую руку надела
Перчатку с левой руки...
(Анна Ахматова)
Совершить такую ошибку можно только в состоянии сильного волнения. Да и как ни надевай такую перчатку, она всё равно не подойдёт. Организм, как мы видим, прекрасно различает правое и левое.
Причём, что удивительно (об этом и пойдёт речь), — как правило, живая природа отдаёт явное предпочтение одному из двух направлений — либо правому, либо левому. Среди людей гораздо чаще встречаются «правши», нежели «левши». Раковины моллюсков закручиваются обычно справа налево, и лишь одна на несколько тысяч — наоборот. (Впрочем, к этому можно добавить, что и наблюдаемая нами неживая природа как будто «предпочитает», например, вещество антивеществу.)
А французский биолог Луи Пастер (см. ст. «Луи Пастер») даже назвал нарушение симметрии, асимметрию, основным свойством живого. Он не имел в виду, конечно, только знакомые нам внешние проявления асимметрии. Дело в том, что асимметрия живого существует и на самом глубоком уровне — на уровне молекул живых организмов.
В разделе «Белки» рассказано, что белковые цепочки состоят из отдельных «бусин» — аминокислот. И, оказывается, аминокислоты могут быть правыми и левыми. Не отличаясь по химическому составу, они будут отличаться друг от друга, как предмет (та же рука) и его зеркальное отражение. Эти формы не совмещаются друг с другом ни при каких поворотах, как не надеваются левая и правая перчатки на одну руку.
Как вы считаете, какие аминокислоты входят в состав белков живых организмов? Вероятно, поровну — правые и левые? Так вот, нет — только левые! Более того, правые формы для земной жизни просто вредны. Когда одна из западных фармацевтических фирм случайно сталапродавать лекарство, в состав которого входило равное количество правых и левых форм, у употреблявших его беременных женщин рождались больные дети. Точно так же правыми и левыми могут быть и углеводы (см. раздел «Углеводы» в статье «Вещества организма»). В составе живых организмов все углеводы — правые.
В повести Льюиса Кэрролла «Алиса в Зазеркалье» девочка Алиса проходит сквозь зеркало и попадает в «зеркальный» мир. Математик Кэрролл не был, вероятно, знаком с тонкостями химического строения зеркально-симметричных веществ. Ведь, попади Алиса в мир, «отражённый» на уровне молекул, она бы... умерла от голода, т. к. не смогла бы питаться «зеркальной» пищей (а вот вода ничем не отличалась бы от нашей).
Почему же случилось так, что в составе живых существ нашей планеты оказались только правые углеводы и левые аминокислоты? В одном из рассказов польского фантаста Станислава Лема предлагается такая версия. Будто бы жизнь была завезена на Землю на инопланетном космическом корабле. И механик этого корабля, выливая в первобытный земной океан ведро органических веществ, размешал их кочергой в одном направлении. И вот результат... Это, конечно, шутка.
А как обстояло дело в действительности? Важнейшие жизненные процессы («считывание» генетической информации, синтез белка — см. ст. «Генетика») могут протекать только в «зеркально»-однородной среде. Значит, жизнь неизбежно должна была нарушить равноправие правых и левых форм органических веществ.
Быть может, одновременно где-то возникла «зеркальная» жизнь — с правыми аминокислотами и левыми углеводами? Но тогда, видимо, в борьбе за существование выжили наши далёкие предки, истребив своих «двойников из Зазеркалья».
Далеко не всякий пятилетний ребёнок различает правую и левую стороны. В XIX в. солдаты заучивали «право и лево», привязывая к правому сапогу сено, а к левому — солому. И сейчас взрослому человеку случается ошибиться. А взятый из живого организма белок-фермент разделяет смесь правых и левых аминокислот безошибочно и чисто. Так что в чём-то жизнь, безусловно, ушла вперёд, развиваясь от белковых молекул до человека. А в чём-то мы поотстали...
ГЛИКОЛИЗ
Герои романа Жюля Верна «Дети А капитана Гранта» только собрались поужинать мясом подстреленной ими дикой ламы (гуанако), как вдруг выяснилось, что оно совершенно несъедобно.
«Быть может, оно слишком долго лежало?» — озадаченно спросил один из них.
«Нет, оно, к сожалению, слишком долго бежало! — ответил учёный-географ Паганель. — Мясо гуанако вкусно только тогда, когда животное убито во время отдыха, но если за ним долго охотились и животное долго бежало, тогда его мясо несъедобно».
Вряд ли Паганель сумел бы объяснить причину описанного им явления. Но, пользуясь данными современной науки, сделать это совсем нетрудно. Начать придётся, правда, несколько издалека.
Когда клетка дышит кислородом, глюкоза «сгорает» в ней, превращаясь в воду и углекислый газ, и выделяет энергию. Но, предположим, животное долго бежит, или человек быстро выполняет какую-то тяжёлую физическую работу, например, колет дрова. Кислород не успевает попасть в клетки мышц. Тем не менее клетки «задыхаются» не сразу. Начинается любопытный процесс — гликолиз (что в переводе означает «расщепление сахара»). При распаде глюкозы образуется не вода и углекислота, а более сложное вещество — молочная кислота. Каждый, кто пробовал кислое молоко или кефир, знаком с её вкусом.
Энергии при гликолизе выделяется в 13 раз меньше, чем при дыхании. Чем больше молочной кислоты накопилось в мышцах, тем сильнее человек или животное чувствует их усталость. Наконец, все запасы глюкозы в мышцах истощаются. Необходим отдых. Поэтому, перестав колоть дрова или взбежав по длинной лестнице, человек обычно «переводит дух», восполняя недостаток кислорода в крови. Именно молочная кислота сделала невкусным мясо животного, подстреленного героями Жюля Верна.
Точно так же молочнокислые бактерии извлекают для себя энергию, превращая глюкозу, содержащуюся в молоке, в молочную кислоту, а само молоко (или сливки) — в простоквашу, ряженку, кефир, йогурт, мацун, творог, сметану и др. Кислород бактериям при этом не нужен: брожение заменяет им дыхание.
А при спиртовом брожении расщепление глюкозы идёт дальше, и она распадается на этиловый спирт и углекислоту. На этом основано приготовление вина, пива, кваса, кумыса, дрожжевого теста.
БЕЛКИ
Водной из книг Библии сказано: «Вначале было Слово». Современная книга о происхождении жизни по аналогии могла бы начинаться фразой: «Вначале был белок».
Первый белок, с которым мы знакомимся в своей жизни, — это белок куриного яйца, альбумин. Он хорошо растворим в воде, при нагревании сворачивается (мы видим это, когда жарим яичницу), а при долгом хранении в тепле разрушается — яйцо протухает.
Но белок спрятан не только под яичной скорлупой. Волосы, ногти, когти, шерсть, перья, копыта, наружный слой кожи — все они почти целиком состоят из другого белка — кератина. Кератин нерастворим в воде, не сворачивается, не разрушается в земле: рога древних животных сохраняются в ней так же хорошо, как и их кости. (Хотя некоторые насекомые (личинки моли) и даже птицы — орлы-стервятники — прекрасно переваривают его.) А белок пепсин, содержащийся в желудочном соке, сам способен разрушать другие белки (что нужно для пищеварения). Белок интерферон применяется при
лечении насморка и гриппа, т .к. убивает вызывающие эти болезни вирусы. А белок змеиного яда способен убить человека.
Если из организма животного удалить всю воду, то больше половины его сухой массы составят различные белки. Чем сложнее организм, тем больше белков он содержит. В организме бактерии — примерно 3—4 тыс. разных белков, а у млекопитающих — уже около 50 тыс.
Как устроен белок? Мы не будем здесь подробно останавливаться на химическом строении белка. Некоторое представление о его сложности даёт химическая формула гемоглобина белка, придающего красный цвет крови и разносящего кислород от лёгких по всему телу. Вот она:
С3032 Н4816 О872 N780 S8 Fe4
Чтобы представить себе наглядно общую схему строения белка, скажем лишь, что его молекула напоминает нитку, унизанную разноцветными бусинами. «Бусины» называются аминокислотами. В белках встречается, как правило, 20 аминокислот; в нашей схеме это означает, что «бусины» могут быть двадцати разных цветов. Каждая аминокислота имеет своё название: например, глицин, аланин, лейцин, валин и т. д. Белки разного размера включают в себя от нескольких десятков до нескольких сотен и даже тысяч аминокислот. В среднем длина белка — около 300 аминокислот. «Бусины»-аминокислоты могут связываться друг с другом и образовывать цепочку «бус» — белок.
Когда человек съедает, допустим, бифштекс, содержащиеся в бифштексе белки — «бусы» — перевариваются и распадаются на отдельные «бусины». Из них организм человека строит уже свои собственные белки.
Как вы думаете, сколькими способами можно нанизать на нитку длиной в 100 бусин бусины 20 цветов? 20100 способами! Это число со 130 нулями! Представить такое число невозможно: во всей Вселенной не найдётся такого количества элементарных частиц. Сколько же различных белков с совершенно разными свойствами может построить природа! Недаром белки считают самыми сложными молекулами.
Однако хитрости устройства молекулы белка не исчерпываются рассказанным. Прямая нитка бус — это только первичная структура белка. Аминокислотная цепочка способна изгибаться, «бусины» притягиваются друг к другу. Цепочка закручивается в спираль, или нечто вроде гармошки, или что-то ещё посложнее, — это вторичная структура. Но и этим дело не заканчивается. Спираль, как волшебная змея, сворачивается ещё и ещё, закручиваясь в узел, клубок или шарик (глобулу). Это третичная структура. У некоторых белков устройство ещё сложнее — отдельные клубки собираются вместе по 2, 3, 4 (и даже больше) штуки. Они крепко прилипают друг к другу и дальше работают совместно. (Гемоглобин, о котором мы уже упомянули, именно так и устроен.) Это четвертичная структура.
«Клубок» можно легко размотать, а «пружину» — раскрутить. Такой процесс называют денатурацией. Во время денатурации свойства белка сильно изменяются. Зачем человек, например, разогревает или готовит себе пищу? Отчего бы не поглощать её сырой? Дело в том, что при варке, допустим, того же яйца яичный белок денатурирует — из слизистой жидкости превращается в плотную белую массу. При полной денатурации «клубок» превращается в «проволоку» — тогда становится очень удобно «резать её на куски» (аминокислоты), что и делает желудочный сок со съеденной яичницей. Сырое яйцо или мясо переварить гораздо труднее.
Живое существо, чьи белки денатурировали, умирает. При температуре тела выше 42° С белки человеческого тела не выдерживают и начинают денатурировать, человек погибает. Размотать белковый «клубок» можно не только при высокой температуре, но и с помощью облучения, холода, яда, высушивания, а также многими другими способами.
Если белок при «раскручивании» не распался на отдельные «бусины», то он может вновь скрутиться в «клубок». Происходит ренатурация.
Теперь посмотрим, какую роль играют белки в организме. Мы можем без преувеличения сказать: самую важную. Из белков строится всё наше тело. У каждого человека свой набор белков (исключая близнецов (см. ст. «Близнецы»), у которых он одинаковый). Чем в более дальнем родстве между собой находятся люди, тем более различен их белковый состав. Точно так же и во всей живой природе: у слона и человека гораздо больше похожих белков, чем у человека и гриба подберёзовика. Каждый белок определяет какое-нибудь свойство организма: цвет глаз, волос, строение внутренних органов и т. д.
Но не следует воспринимать белки как неподвижные «кирпичи», составляющие организм. В том-то и заключается основное чудесное свойство белков, что это не «кирпичи» организма, а скорее «шестерёнки», «маятники» и «колёсики». Работая, каждый белок частично раскручивается (денатурирует), а готовясь к работе, закручивается (ренатурирует). Так же работает ружьё: оно стреляет, когда изменяется положение курка, а затем курок снова надо взводить."
Например, один из белков сетчатки глаза — зрительный пурпур (родопсин) — «раскручивается» под действием света (при этом он выцветает). А в темноте он восстанавливается (см. ст. «Органы чувств»). Благодаря этому процессу в конечном итоге мы видим свет.
Есть белки, точно так же воспринимающие тепло, запах, вкус, механические колебания. Раздражители «дёргают» за кончик белкового «клубка», начиная его разматывать. В результате возбуждение передаётся нервным клеткам.
По такому же принципу работает и уже упомянутый нами транспортный белок гемоглобин, разносящий по нашему телу кислород. Этот белок любопытен тем, что содержит железо, необходимое ему для работы. Всего в организме человека содержится 4—5 г железа. Захватив кислород, гемоглобин частично «раскручивается», а затем, доставив его в нужное место, «закручивается» обратно, отдавая кислород для дыхания окружающим тканям.
Любопытным образом работают другие транспортные белки, которые переносят разные вещества сквозь клеточную мембрану. Крупные молекулы в отличие, например, от молекул воды не могут проскочить сквозь эту мембрану. Транспортные белки в закрученном состоянии можно отчасти сравнить по форме со сложной вычурной рюмкой или бокалом, торчащим вовне из мембраны. Форма «бокала» идеально подходит под какое-то одно конкретное вещество. Как только оно заполняет «бокал», он автоматически поворачивается внутрь клетки и там освобождается от содержимого. Так в клетку переносится, например, глюкоза.
Точно так же — как футляр к инструменту — подходят к проникшим в организм чужеродным белкам белки-антитела, своеобразные «стражники» организма. Захватывая чужие белки, они выбрасывают их из организма. Антитела охраняют человека от возбудителей болезней — бактерий, вирусов. К сожалению, эти «охранники» организма «слепы», и если, например, человеку пересадить вместо повреждённой здоровую, но чужую почку, антитела атакуют её и тем самым губят человека.
Мы не сможем в небольшом разделе подробно рассказать о всей той разнообразной работе, которую выполняют белки. Остановимся на ещё одной их роли в организме, также очень важной.
В организме каждую секунду протекают миллиарды химических изменений и превращений. Чем выше температура, тем быстрее идёт реакция (даже сахар быстрее растворяется в горячем чае). Но при температурах 40—45° С, как мы знаем, большинство белков денатурирует. А ведь при таких низких температурах необходимые организму реакции почти не идут! Как же быть? Нужны особые белки, которые ускоряли бы ход реакций.
И такие белки в природе существуют. Они называются ферментами. Поднимается ли тесто на дрожжах, исчезает ли у подрастающего головастика хвост, или хищное растение росянка переваривает комара — нигде не обошлось без ферментов. Они ускоряют скорость реакций в миллионы, а иногда в десятки миллиардов раз.
Жизнь без ферментов была бы невозможна, поскольку химические реакции в клетке шли бы слишком медленно или не шли бы вовсе. При нагревании первыми из белков разрушаются ферменты, поэтому непродолжительный, но сильный нагрев убивает большинство живых существ. Их ферменты денатурируют, а без них организм перестаёт работать.
Каждый фермент годится только для своей, одной-единственной реакции. Можно себе представить, какое бесчисленное множество ферментов нужно для нормальной работы организма!
Как работает белок-фермент? По уже знакомому нам принципу. В «клубке» белка-фермента есть «ямка», куда как раз аккуратно ложатся молекулы тех веществ, которым фермент должен «устроить встречу». Фермент как бы узнаёт «свои» молекулы. «Ямка»
называется активным центром фермента. Используем ещё одно сравнение: нужные вещества подходят к ферменту, как ключ к замку. Но замок этот «с секретом». Он сам изменяется, подстраиваясь под «ключ», т. е., как и в приведённых выше примерах, частично «.раскручивается», денатурирует. В качестве аналогии можно привести, например, одежду. Она подогнана под размер тела человека, но при надевании форма её изменяется.
Не следует думать, что вещества подолгу задерживаются в активном центре фермента. Иногда сквозь эту «ямку» за минуту успевает проскочить 5 млн молекул реагирующих веществ! (Иные, впрочем, работают «медленно» — с десяток «оборотов» в секунду.)
Фермент может работать и вне организма. Например, во многие стиральные порошки сейчас добавляют ферменты, которые прекрасно справляются со своей ролью — удаляют с белья пятна грязи. Нужны ферменты и в пищевой индустрии. Каждый год мировая промышленность для разных целей производит сотни тысяч тонн ферментов.
Как мы видим, белок — это действительно основа жизни, и где его нет — жизнь невозможна.
УГЛЕВОДЫ
Картофельные клубни (крахмал), пищевой сахар (сахароза), бумага, на которой напечатана эта книга (целлюлоза), — всё это углеводы или почти чистые углеводы. Все они состоят только из углерода, кислорода и водорода, при этом соотношение атомов водорода и кислорода в них такое же, как в молекулах воды. Получается, что состоят они из «угля» (т. е. углерода) и воды — отсюда и их название.
ГЛЮКОЗА. Пищевой сахар, сахароза, — соединение глюкозы и фруктозы.
Глюкоза — пожалуй, самый известный из углеводов. В организме любого животного должно постоянно содержаться определённое её количество (в крови человека — около 15 г). Организм «сжигает» глюкозу, превращая её в углекислоту и воду, и таким образом получает энергию для всех идущих в нём процессов.
Некоторые лягушки нашли применение глюкозе в своём организме — любопытное, хотя и гораздо менее важное. В зимнее время иногда можно найти лягушек, вмёрзших в ледяные глыбы, но после оттаивания земноводные оживают. Как же они ухитряются не замёрзнуть насмерть? Оказывается, с наступлением холодов в крови лягушки в 60 раз увеличивается количество глюкозы. Это мешает образованию внутри организма кристалликов льда.
КРАХМАЛ И ГЛИКОГЕН. Хранить глюкозу в чистом виде живым организмам довольно обременительно: её не слишком большие молекулы легко «разбегаются» из клеток. Как грибники для хранения нанизывают грибы на нитки, так и организмы про запас составляют «бусы» из молекул глюкозы. «Нанизывать» глюкозу в виде бус можно разными способами. При этом получаются разные вещества.
Растения запасают углеводы в виде крахмала, а животные и грибы — в виде более легко растворимого гликогена. Известно, что если капнуть на кусочек хлеба или в крахмальный раствор немного йода, они окрасятся в синий цвет. Такое окрашивание при взаимодействии с йодом даёт крахмал. А гликоген с йодом даёт красное окрашивание.
ЦЕЛЛЮЛОЗА. Целлюлоза (клетчатка) — самое распространённое органическое вещество. Её молекула тоже имеет вид «бус», составленных из молекул глюкозы. В одной «нитке» бус около 10 тыс. «бусин». «Нитки» эти отличаются большой прочностью (в отличие от крахмала и гликогена).
Целлюлоза — основная часть древесины. Из неё состоит бумага, хлопчатобумажная ткань, вата. Казалось бы, целлюлоза — почти неисчерпаемый источник пищи для всего живого. Но человек и большинство животных питаться ею не могут, т. к. целлюлоза почти не поддаётся расщеплению. Усваивать её умеют только некоторые микроорганизмы и грибы. Именно они постепенно превращают в труху мёртвые деревья. Животные (например, термиты, травоядные звери), которые поедают целлюлозу, могут переваривать её только с помощью бактерий и простейших, живущих в их желудке и кишечнике. Если эти микробы погибнут — животное умрёт от голода.
ХИТИН. По химическому строению и своему значению для живых организмов хитин близок к целлюлозе. Из хитина, в частности, строится наружный скелет членистоногих, а также клеточная оболочка большинства грибов.
ЖИРЫ И ЛИПИДЫ. Одни вещества, смешиваясь с водой, равномерно в ней растворяются (их называют гидрофильными, т. е. «любящими воду»), другие, как их ни перемешивай, останутся «сами по себе» (их зовут гидрофобными, т. е. «ненавидящими воду»). А что произойдёт, если «сшить» две молекулы — любящую «купаться» и не желающую это делать?
Прежде чем ответить на этот вопрос, вспомним об одном любопытном наблюдении. Учёные как-то изучали поведение в неволе странного создания — двухголовой змеи. Однажды произошёл забавный случай: у одной из голов, видимо, возникло желание нырнуть в воду, а другая голова этому воспротивилась. После короткой «борьбы» змея всё же окунулась в воду, но
« гидрофобная» голова с отвращением держалась над поверхностью воды.
Примерно так же ведёт себя молекула, имеющая
«водолюбивую» головку и «водобоязненный» хвост (чаще два или три «хвоста»). Именно так устроены молекулы обыкновенного мыла, молекулы жиров и липидов, о которых мы рассказываем. Проще всего таким молекулам расположиться по границе раздела сред, например воды и воздуха. «Хвосты» при этом направить в воздух, а «головки» — в воду. Ну а если кругом вода? Молекулы находят оригинальный выход из положения. Они собираются в плоский слой толщиной в две молекулы. При этом «головки» обращены к воде, а «хвосты» «довольствуются собственным обществом».
То, что мы получили, — это и есть липидная мембрана, окутывающая все клетки живых организмов и разделяющая их изнутри на «отсеки» (см. ст. «Клетка»).
Помимо этой своей роли, самой важной, липиды и жиры выполняют ещё несколько серьёзных задач. Из 10 кг жира можно получить 11 кг воды. Этим пользуются «корабли пустыни» — верблюды — во время
длинных безводных переходов; сурки, медведи и другие животные во время зимней спячки. В это время они постепенно «пьют» свой накопленный жир.
Киты, тюлени, моржи, живущие в холодной воде полярных морей, защищаются от холода с помощью толстого жирового слоя. Слой китового жира (ворвани) достигает метра в толщину!
И наконец, запасающая роль жиров. Жиры
«хранят энергию» вдвое более экономно, чем углеводы (из каждого грамма жиров можно извлечь вдвое больше энергии, чем из такого же количества углеводов). Всем известно, что когда человек потребляет слишком много углеводов, например сладостей, организм превращает углеводы пищи в жиры и «откладывает про запас». Точно такие же жировые «запасы» хранятся обычно в семенах растений.
АТФ
Представьте, что у вас в руках множество разных заводных игрушек. Если все их завести ключом, а потом привести в движение, мы увидим целый «мирок», живущий своей жизнью. Игрушечные куры будут деловито клевать воображаемое зерно, собаки — «служить», автомобили — разъезжать взад-вперёд, лягушки — прыгать. Но все эти действия, несмотря на их внешние различия, запущены одним и тем же механизмом, благодаря одному и тому же повороту ключа.
Что-то похожее мы видим в живой клетке с её сотнями и тысячами разнообразных, одновременно идущих процессов. Роль такого «механизма» здесь играет вещество. Оно называется аденозинтрифосфорной кислотой, а если коротко — АТФ. Молекулу АТФ можно сравнить с заведённым, но не пущенным моторчиком игрушки. Когда возникает необходимость, АТФ «срабатывает» и отщепляет от себя фосфорную кислоту. При этом выделяется сравнительно много энергии. Теперь «мотор» надо заводить снова.
Когда в клетке «сжигаются» органические вещества, за счёт выделенной энергии «заводятся» огромные количества молекул-«моторчиков». Без АТФ организм не смог бы воспользоваться энергией, выделенной при «сжигании» в клетке Сахаров, жиров и т. д. Образно говоря, АТФ — это единственная энергетическая «валюта», которая принимается во всех клеточных «банках». В сравнении с «крупными купюрами» (молекулами жиров, Сахаров) это — мелкая разменная монета. Потому-то она и удобна для разнообразных «платежей» (химических реакций).
Имеющейся в клетке АТФ хватает ненадолго. Например, у человека в клетке мышцы АТФ хватает примерно на 30 сокращений. Поэтому наряду с расходом АТФ должна постоянно восстанавливаться. У животных, растений и грибов для этого в каждой клетке работают специальные «силовые станции» — митохондрии (см. ст. «Клетка»).
ВИТАМИНЫ
Сейчас трудно найти человека, не слышавшего слова «витамин», а между тем до последней четверти XIX в. люди не подозревали об их существовании. В 1881 г. русский учёный Николай Лунин приготовил искусственное «молоко», т. е. смесь всех тех белков, жиров, углеводов,
солей, которые содержатся в молоке, и этой смесью стал кормить мышей. Через некоторое время все подопытные мыши погибли. Из опыта стало ясно, что в природной пище содержатся какие-то необходимые вещества, создать которые организм сам по себе не может. Тридцать лет спустя их назвали «витаминами». Сегодня их насчитывают несколько десятков. Это вещества самой разной природы. В организме витамины не служат ни «стройматериалом», ни «топливом» — они регулируют обмен веществ. Расскажем о некоторых из них.
ВИТАМИН С (аскорбиновая кислота). Недостаток этого витамина в организме человека приводит к тяжёлому заболеванию — цинге. В старину цингу считали заразной болезнью. Часто страдали ею участники далёких плаваний и полярных экспедиций, от неё умирали заключённые концлагерей. Во время одной из экспедиций Христофора Колумба часть экипажа заболела цингой. Умирающие моряки попросили высадить их на каком-нибудь острове, чтобы они могли там спокойно умереть. Через несколько месяцев на обратном пути корабли Колумба вновь подошли к берегу этого острова. Каково же было изумление прибывших, когда они встретили здесь своих товарищей живыми и здоровыми! Остров назвали «Кюрасао» (по-португальски это означает «оздоровляющий»). От гибели моряков спасли росшие на острове фрукты, в изобилии содержащие витамин С.
Признаки болезни — головокружение, слабость, красная сыпь на коже, кровоточивость дёсен, расшатывание зубов. Цинга описана во многих художественных произведениях, например в рассказе Джека Лондона «Ошибка Господа Бога» о золотоискателях Аляски:
«"Что у вас тут? — спросил Смок одного из лежащих... — Оспа, что ли?" Вместо ответа человек показал на свой рот, с усилием растянул вспухшие губы, и Смок невольно отшатнулся. «Цинга», — негромко сказал он Малышу, и больной кивком подтвердил диагноз. «Еды хватает?» — спросил Малыш. "Ага, — ответил человек с другой койки, — можете взять. Еды полно"».
Природные средства для предотвращения цинги — шиповник, перец, смородина, цитрусовые.
ВИТАМИН А. При недостатке этого витамина у человека развивается болезнь под названием «куриная слепота». Он ничего не видит в сумерках, натыкается на стены. Средства от этой болезни — печень или рыбий жир. Причём в каждом килограмме печени белого медведя накапливается столько витамина А, что его хватило бы человеку на добрых сорок лет! Такое количество витамина может вызвать тяжёлое, даже смертельное отравление. Есть предположение, что от такого отравления погибла экспедиция полярного исследователя Андре. Как видим, злоупотреблять витаминами не стоит.
Морковь, жёлтые сорта помидоров содержат оранжевые кристаллы каротина, который в организме превращается в витамин А. Правда, для такого превращения необходимо присутствие в пище жира (поэтому в тёртую морковь, например, добавляют масло или сметану).
ВИТАМИН Д. При его недостатке развивается рахит, особенно часто — у детей. В городах Англии в конце XVIII в. население целых кварталов страдало этой болезнью. Поэтому рахит прозвали «английской болезнью». При рахите в костях не откладывается известь, они остаются нетвёрдыми, ноги и позвоночник уродливо изгибаются. Помогают от рахита загорание под прямыми солнечными лучами и всё тот же рыбий жир.
ВИТАМИН B1. При нехватке этого витамина человек заболевает болезнью бе'ри-бе'ри (в переводе с сингальского — «большая слабость»). Оказываются поражены нервы, у больного появляется «походка на цыпочках». В Китае эту болезнь знают уже две тысячи лет. В 1897 г. голландский врач X. Эйхман вызвал бери-бери у кур, кормя их варёным рисом, очищенным от отрубей. Стоило добавить в птичий корм отруби, как болезнь проходила.
Людям в тех же целях полезно есть хлеб из муки грубого помола, а также из ржаной муки.
ВИТАМИН РР (никотиновая кислота). В отличие от ядовитого никотина его химическая «родственница», никотиновая кислота, — полезный витамин. Её нехватка вызывает заболевание пеллагрой, признаки которой — розовые пятна на коже (как от солнечных ожогов), воспаление слизистых оболочек рта, желудка.
Никотиновая кислота есть в пивных дрожжах, мясе, гречневой каше.
Мы рассказали лишь о немногих из важнейших витаминов. Так же, как перечисленные, необходимы человеку витамины Р, В2, B6, B12, Е, К и другие. Заметим, что многие из этих веществ витаминами называют лишь условно — организм человека может их создать, но не всегда. Часто для этого нужно определённое «сырьё» (т. е. некоторые вещества в пище). A B12 создаётся микробами, живущими в кишечнике, и недостаток его возникает, если эти микробы убиты антибиотиками.
У каждого живого существа — свой «список» витаминов. То, что является витамином для человека, может не быть таковым, например, для собаки. Зато ей могут быть необходимы другие витамины, человеку не нужные.
В фантастическом рассказе американского писателя Артура Порджесса крошечный божок Йип хотел отблагодарить героя рассказа за оказанную услугу, выполнив любую его просьбу. Но божок был очень мал, и стоимость награды не могла превышать двух долларов. В конце концов Йип помог герою покорить сердце любимой девушки. Причём главное условие не было нарушено — ведь, как утверждает писатель, «стоимость всех химических веществ, входящих в состав организма человека весом около 70 кг, составляет 1 доллар 98 центов».
В организме человека, весящего 70 кг, — 45,5 кг кислорода, 12,6 кг углерода, 7 кг водорода, 2,1 кг азота, 1,4 кг кальция, 700 г фосфора. Всех остальных элементов, вместе взятых (в основном калия, серы, натрия, хлора, магния, железа и цинка), — около 700 г. Вот всё это «богатство» и стоило, по подсчётам писателя, 1 доллар 98 центов.
Самый важный из перечисленных «элементов жизни» — углерод. Углерод — основа жизни. Органические вещества — это всегда соединения углерода. Атомы углерода обладают уникальной способностью образовывать с другими атомами углерода цепи и кольца различной длины. Отсюда бесконечное разнообразие соединений углерода.
А всего в живых клетках можно найти около 70 химических элементов таблицы Менделеева. Среди них имеются даже такие ядовитые и экзотические, как олово, свинец, мышьяк, золото.
Элементы, которые содержатся в организме в количестве нескольких граммов или долей грамма, называют микроэлементами. К примеру, железа в организме человека всего 4—5 г. Этого количества металла хватило бы разве что на один гвоздь среднего размера. Но благодаря железу работает, например, гемоглобин крови, переносящий кислород. Иода в организме содержится ещё меньше — сотые доли грамма. Но при его отсутствии у человека развивается серьёзное заболевание — зоб (см. раздел данной статьи «Гормоны»).
Для тех наших читателей, кому «стоимость человека», подсчитанная американским писателем, показалась возмутительно низкой, мы можем привести возражение профессора Йельского университета Г. Моровица против этого подсчёта. Он заметил, что подсчитывать надо стоимость не элементов, входящих в состав организма (углерода, кислорода и т. д.), а сложных органических соединений (белков, углеводов и др.). При таком подсчёте стоимость уже только одних гормонов человека (о которых рассказано ниже) составит миллионы долларов — целое состояние!
СОЛИ. Помимо воды, важнейшие из неорганических веществ живого организма — минеральные соли. Из нерастворимых солей строятся кости позвоночных животных (фосфат кальция), раковины моллюсков, оболочка птичьих яиц (карбонат кальция). Растворённые соли в каждой клетке составляют 1% от её массы. Роль их в жизнедеятельности клетки чрезвычайно многообразна.
Самая известная соль — поваренная, хлористый натрий. Гулливер, герой знаменитого произведения Джонатана Свифта, в одном из своих путешествий оказался без поваренной соли. Он рассказывал: «Сначала я очень болезненно ощущал отсутствие соли, но скоро привык обходиться без неё, и я убеждён, что распространённое употребление этого вещества есть результат невоздержанности. Ведь мы не знаем ни одного животного, которое любило бы соль».
Однако Гулливер ошибался. Травоядные животные постоянно испытывают солевой голод и жадно слизывают соль всюду, где находят. А вот плотоядные животные, действительно, получают достаточно поваренной соли с поедаемым ими мясом.
Точно так же питающиеся мясом и рыбой эскимосы и чукчи прекрасно обходятся без соли. Помните реакцию на солёную пищу персонажа романа Даниэля Дефо «Приключения Робинзона Крузо» — Пятницы, никогда не пробовавшего соли? «Он удивился, зачем я ем суп и мясо с солью. Он стал показывать мне знаками, что с солью не вкусно. Взяв в рот щепотку соли, он принялся отплёвываться и сделал вид, что его тошнит от неё, а потом выполоскал рот водой. ...Лишь долгое время спустя он начал класть соль в кушанье, да и то немного». Вероятно, Пятница до встречи с Робинзоном питался в основном животной пищей.
Надо сказать, что поваренная соль сыграла большую роль в истории человечества: служила заменителем денег, являлась причиной «соляных бунтов» (Московский соляной бунт 1648 г., вызванный тем, что правительство подняло налог на соль; подобные бунты прокатились тогда по многим городам России) и «соляных походов протеста» (в Индии в начале XX в. — когда в знак неповиновения английским властям, обладавшим монополией на производство соли, её выпаривали из морской воды).
Соль необходима живым организмам. В то же время избыток соли вреден. Увлекаясь такими продуктами, как соленья, сельдь, колбасы, люди вводят в организм слишком много соли. В сутки организму необходимо 8—9 г соли, но человек потребляет обычно вдвое большее её количество. Это приводит к повышенному кровяному давлению (гипертонии). Япония, где каждый житель потребляет около 30 г соли в день, держит первенство по числу больных этой болезнью.
ВОДА
Леонардо да Винчи назвал воду «соком жизни» на Земле. Действительно, всё живое в среднем на 80% состоит из этого неорганического вещества (человек — на 60%). Медузы состоят из воды на 95%, клетки мозга человека — на 85%, кровь — на 80%, клетки костной ткани — на 20%. Потеря воды в количестве 1% от веса тела вызывает сильную жажду. Если потеря воды в 10 раз больше (т. е. составляет 10% от веса тела), это может привести к смерти.
Почти все химические реакции в клетке идут в водной среде. Без воды, этого универсального растворителя, они были бы невозможны.
Кроме того, испаряясь, вода охлаждает организмы обитателей суши. Если бы человек не испарял пот, то после часа напряжённой физической работы или игры в футбол температура его тела подскочила бы градусов до сорока шести!
Писатель Антуан де Сент-Экзюпери так сформулировал мысль о соотношении воды и жизни: «Вода! Ты не просто необходима для жизни, ты и есть сама жизнь».
И всё-таки некоторые учёные считают, что жизнь возможна не только там, где есть вода. В доказательство они приводят тот факт, что многие белки-ферменты земных организмов (см. раздел «Белки» в статье «Вещества организма») прекрасно работают в других средах, например в уксусной кислоте, этиловом спирте.
ИЗ ИСТОРИИ ГИГИЕНЫ
Ещё в незапамятные времена люди поняли, что вода великолепно помогает поддерживать чистоту тела и уберечься от многих болезней. Но гигиена переживала в разные эпохи и хорошие, и плохие времена. В Древнем Риме бани (термы) помимо прямого назначения служили чем-то вроде клубов и пользовались большой популярностью. Правитель, желавший оставить по себе добрую память, строил общественные бани. А богатые римляне имели домашние ванные комнаты. По водопроводу подавалась горячая, холодная и тёплая вода.
До XIII в. в Европе сохранялись эти традиции отношения к воде и гигиене. Встав утром, обеспеченные люди имели обыкновение принимать ванну. Подлинное «средневековье» в этой сфере наступило с XV в., с изобретением ночного белья. Традиция утренней ванны отошла в прошлое: люди только переоблачались из ночного в дневное платье.
Закрывались общественные бани. Даже перед едой руки уже не мыли. В одном из учебников хороших манер тех времён давался совет: «Руки и лицо мыть почти ежедневно». Французский «король-солнце» Людовик XIV, хотя и имел собственную ванну, пользовался ею только при болезни.
Европейский горожанин в среднем расходовал в день на мытьё, стирку, приготовление пищи около 20 л воды. Для сравнения скажем, что современный человек использует в день в среднем 300—400 л воды. И это лишь необходимый минимум!
Возрождение гигиены наступило только в XVIII в. Но зато сегодня практически во всех странах признано, что вода, гигиена и здоровье — вещи, неотделимые друг от друга.
ОБМЕН ВЕЩЕСТВ
И живые существа, и неживые предметы устойчивы и могут долго сохраняться неизменными. Но причины этой устойчивости разные. Автомобиль прочен, т. к. он состоит из металла. Мельчайшие частицы — атомы — «держатся» друг за друга и не дают автомобилю разрушиться. При этом и автомобиль, и камень, и все другие неживые предметы в продолжение своего существования состоят в основном из одних и тех же атомов.
Иное дело — живой организм. Человеческий организм, как и организмы всех животных и растений, постоянно себя перестраивает. Из различных питательных веществ, содержащихся в пище, — белков, жиров и углеводов — живые существа строят свои клетки. Вещества, не нужные организму, он выделяет в окружающую среду. Эти явления и называются обменом веществ. За 8 лет состав атомов человека почти полностью меняется, но при этом каждый из конкретных людей, как мы знаем, остаётся самим собой. За всю жизнь человека через его организм проходит 75 т воды, 17 т углеводов, 2,5 т белков. Постоянная «лепка» организмом самого себя называется пластическим обменом (от греческого «пластикос» — лепной).
Таким образом, живое существо правильнее было бы сравнивать не с предметом (например, камнем), а скорее с постоянным процессом — как, например, падение потока воды в водопаде.
Чтобы автомобиль ехал, в нём сжигается бензин. Чтобы работали заводы, также нужно сжигать топливо. Устойчивость живых организмов основывается на постоянном «ремонте». Но и для ремонта нужна энергия. Откуда же организм берёт энергию? В любом организме тоже «сжигаются» сложные органические вещества пищи, только сжигаются без огня. В отличие от пластического это — энергетический обмен.
При горении вещество соединяется с кислородом воздуха. В химии этот процесс называется окислением. Особые белки —ферменты (см. раздел «Белки»), которые есть в любом организме, могут окислять вещества без пламени, и около 40% выделяемой энергии используется на нужды организма. Для сравнения напомним: в паровом двигателе с пользой применяется около 10% энергии, а в двигателе автомобиля — около 30%.
Организмы, которые «сжигают» запасы, созданные другими живыми организмами, называются гетеротрофными, т. е. поедающими других. Это все животные, грибы и большинство бактерий. Человек — тоже гетеротроф.
Но если бы все организмы только «сжигали» органические вещества, эти вещества скоро кончились бы и жизнь стала бы невозможна. Таким образом, жизнь на нашей планете существует только потому, что некоторые организмы научились получать органические вещества из неорганических. Это — растения и часть бактерий. Они называются автотрофами.
Каждый может провести несложный эксперимент: вырастить в горшке с землёй растение, а потом сравнить первоначальный вес земли, её вес в конце опыта и вес самого растения. Даже если растение весит несколько килограммов, получится, что вес земли изменился довольно мало. Откуда же взялся лишний вес растения? Оказывается, из воздуха и воды, которой поливали растение.
С помощью фотосинтеза (см. ст. «Фотосинтез») зелёные растения производят «чудесное превращение»: соединяют углекислый газ воздуха и воду, а получают сахара, или, как их называют, углеводы (о которых рассказано ниже), и, кроме того, выделяют кислород. Для этого им нужен только солнечный свет.
И всё же, если бы не гетеротрофы, жизнь на Земле тоже не смогла бы существовать. Представим себе, что бы произошло, если бы в какой-то момент в мире из живых организмов остались только автотрофы — зелёные растения. Умершие растения лежали бы веками, не разлагаясь: «переварить» их было бы некому. Очень скоро растения полностью израсходовали бы углекислый газ, содержащийся в атмосфере, превратив его в органические вещества. Солнце продолжало бы светить, но растениям уже не из чего было бы строить дальше свои организмы. И со смертью последнего из них жизнь на Земле прекратилась бы.
К счастью, этого никогда не случается, т. к. обилие пищи тут же привлекает животных, грибы и бактерии. Благодаря им через некоторое время мёртвое органическое вещество снова превращается в воду и углекислый газ, а в землю поступают минеральные соли, так необходимые растениям. В итоге всех этих превращений растения снова создают пищу для всех, а животные, грибы и бактерии разлагают её снова до простых неорганических веществ. Весь углекислый газ атмосферы каждые 300 лет проходит через живые организмы. А «полный оборот» атмосферного кислорода длится 2 тыс. лет. Благодаря этому великому круговороту на Земле и поддерживается жизнь.
Трудно себе представить какой-либо процесс на Земле, в котором не участвовали бы живые организмы. Их обмен веществ создал кислородную атмосферу, управлял климатом, формировал облик нашей планеты.
ОБ АСИММЕТРИИ ЖИВОГО
Ещё немецкий философ Иммануил Кант заметил: «Что может быть больше похоже на мою руку или на моё ухо, чем их собственное отражение в зеркале? И всё же я не могу поставить ту руку, которую я вижу в зеркале, на место оригинала».
На аналогичное явление обратили внимание и поэты:
Я на правую руку надела
Перчатку с левой руки...
(Анна Ахматова)
Совершить такую ошибку можно только в состоянии сильного волнения. Да и как ни надевай такую перчатку, она всё равно не подойдёт. Организм, как мы видим, прекрасно различает правое и левое.
Причём, что удивительно (об этом и пойдёт речь), — как правило, живая природа отдаёт явное предпочтение одному из двух направлений — либо правому, либо левому. Среди людей гораздо чаще встречаются «правши», нежели «левши». Раковины моллюсков закручиваются обычно справа налево, и лишь одна на несколько тысяч — наоборот. (Впрочем, к этому можно добавить, что и наблюдаемая нами неживая природа как будто «предпочитает», например, вещество антивеществу.)
А французский биолог Луи Пастер (см. ст. «Луи Пастер») даже назвал нарушение симметрии, асимметрию, основным свойством живого. Он не имел в виду, конечно, только знакомые нам внешние проявления асимметрии. Дело в том, что асимметрия живого существует и на самом глубоком уровне — на уровне молекул живых организмов.
В разделе «Белки» рассказано, что белковые цепочки состоят из отдельных «бусин» — аминокислот. И, оказывается, аминокислоты могут быть правыми и левыми. Не отличаясь по химическому составу, они будут отличаться друг от друга, как предмет (та же рука) и его зеркальное отражение. Эти формы не совмещаются друг с другом ни при каких поворотах, как не надеваются левая и правая перчатки на одну руку.
Как вы считаете, какие аминокислоты входят в состав белков живых организмов? Вероятно, поровну — правые и левые? Так вот, нет — только левые! Более того, правые формы для земной жизни просто вредны. Когда одна из западных фармацевтических фирм случайно сталапродавать лекарство, в состав которого входило равное количество правых и левых форм, у употреблявших его беременных женщин рождались больные дети. Точно так же правыми и левыми могут быть и углеводы (см. раздел «Углеводы» в статье «Вещества организма»). В составе живых организмов все углеводы — правые.
В повести Льюиса Кэрролла «Алиса в Зазеркалье» девочка Алиса проходит сквозь зеркало и попадает в «зеркальный» мир. Математик Кэрролл не был, вероятно, знаком с тонкостями химического строения зеркально-симметричных веществ. Ведь, попади Алиса в мир, «отражённый» на уровне молекул, она бы... умерла от голода, т. к. не смогла бы питаться «зеркальной» пищей (а вот вода ничем не отличалась бы от нашей).
Почему же случилось так, что в составе живых существ нашей планеты оказались только правые углеводы и левые аминокислоты? В одном из рассказов польского фантаста Станислава Лема предлагается такая версия. Будто бы жизнь была завезена на Землю на инопланетном космическом корабле. И механик этого корабля, выливая в первобытный земной океан ведро органических веществ, размешал их кочергой в одном направлении. И вот результат... Это, конечно, шутка.
А как обстояло дело в действительности? Важнейшие жизненные процессы («считывание» генетической информации, синтез белка — см. ст. «Генетика») могут протекать только в «зеркально»-однородной среде. Значит, жизнь неизбежно должна была нарушить равноправие правых и левых форм органических веществ.
Быть может, одновременно где-то возникла «зеркальная» жизнь — с правыми аминокислотами и левыми углеводами? Но тогда, видимо, в борьбе за существование выжили наши далёкие предки, истребив своих «двойников из Зазеркалья».
Далеко не всякий пятилетний ребёнок различает правую и левую стороны. В XIX в. солдаты заучивали «право и лево», привязывая к правому сапогу сено, а к левому — солому. И сейчас взрослому человеку случается ошибиться. А взятый из живого организма белок-фермент разделяет смесь правых и левых аминокислот безошибочно и чисто. Так что в чём-то жизнь, безусловно, ушла вперёд, развиваясь от белковых молекул до человека. А в чём-то мы поотстали...
ГЛИКОЛИЗ
Герои романа Жюля Верна «Дети А капитана Гранта» только собрались поужинать мясом подстреленной ими дикой ламы (гуанако), как вдруг выяснилось, что оно совершенно несъедобно.
«Быть может, оно слишком долго лежало?» — озадаченно спросил один из них.
«Нет, оно, к сожалению, слишком долго бежало! — ответил учёный-географ Паганель. — Мясо гуанако вкусно только тогда, когда животное убито во время отдыха, но если за ним долго охотились и животное долго бежало, тогда его мясо несъедобно».
Вряд ли Паганель сумел бы объяснить причину описанного им явления. Но, пользуясь данными современной науки, сделать это совсем нетрудно. Начать придётся, правда, несколько издалека.
Когда клетка дышит кислородом, глюкоза «сгорает» в ней, превращаясь в воду и углекислый газ, и выделяет энергию. Но, предположим, животное долго бежит, или человек быстро выполняет какую-то тяжёлую физическую работу, например, колет дрова. Кислород не успевает попасть в клетки мышц. Тем не менее клетки «задыхаются» не сразу. Начинается любопытный процесс — гликолиз (что в переводе означает «расщепление сахара»). При распаде глюкозы образуется не вода и углекислота, а более сложное вещество — молочная кислота. Каждый, кто пробовал кислое молоко или кефир, знаком с её вкусом.
Энергии при гликолизе выделяется в 13 раз меньше, чем при дыхании. Чем больше молочной кислоты накопилось в мышцах, тем сильнее человек или животное чувствует их усталость. Наконец, все запасы глюкозы в мышцах истощаются. Необходим отдых. Поэтому, перестав колоть дрова или взбежав по длинной лестнице, человек обычно «переводит дух», восполняя недостаток кислорода в крови. Именно молочная кислота сделала невкусным мясо животного, подстреленного героями Жюля Верна.
Точно так же молочнокислые бактерии извлекают для себя энергию, превращая глюкозу, содержащуюся в молоке, в молочную кислоту, а само молоко (или сливки) — в простоквашу, ряженку, кефир, йогурт, мацун, творог, сметану и др. Кислород бактериям при этом не нужен: брожение заменяет им дыхание.
А при спиртовом брожении расщепление глюкозы идёт дальше, и она распадается на этиловый спирт и углекислоту. На этом основано приготовление вина, пива, кваса, кумыса, дрожжевого теста.
БЕЛКИ
Водной из книг Библии сказано: «Вначале было Слово». Современная книга о происхождении жизни по аналогии могла бы начинаться фразой: «Вначале был белок».
Первый белок, с которым мы знакомимся в своей жизни, — это белок куриного яйца, альбумин. Он хорошо растворим в воде, при нагревании сворачивается (мы видим это, когда жарим яичницу), а при долгом хранении в тепле разрушается — яйцо протухает.
Но белок спрятан не только под яичной скорлупой. Волосы, ногти, когти, шерсть, перья, копыта, наружный слой кожи — все они почти целиком состоят из другого белка — кератина. Кератин нерастворим в воде, не сворачивается, не разрушается в земле: рога древних животных сохраняются в ней так же хорошо, как и их кости. (Хотя некоторые насекомые (личинки моли) и даже птицы — орлы-стервятники — прекрасно переваривают его.) А белок пепсин, содержащийся в желудочном соке, сам способен разрушать другие белки (что нужно для пищеварения). Белок интерферон применяется при
Денатурация молекулы белка.
Молекулы некоторых аминокислот. Разноцветные шарики и конусы — атомы углерода, водорода, кислорода, азота.
Молекулы некоторых аминокислот. Разноцветные шарики и конусы — атомы углерода, водорода, кислорода, азота.
Молекула белка гемоглобина. Рабочие группы, содержащие железо и присоединяющие кислород, обозначены красными кружками.
Принцип работы белка-фермента. Молекула фермента «организует встречу» молекул двух реагирующих веществ.
лечении насморка и гриппа, т .к. убивает вызывающие эти болезни вирусы. А белок змеиного яда способен убить человека.
Если из организма животного удалить всю воду, то больше половины его сухой массы составят различные белки. Чем сложнее организм, тем больше белков он содержит. В организме бактерии — примерно 3—4 тыс. разных белков, а у млекопитающих — уже около 50 тыс.
Как устроен белок? Мы не будем здесь подробно останавливаться на химическом строении белка. Некоторое представление о его сложности даёт химическая формула гемоглобина белка, придающего красный цвет крови и разносящего кислород от лёгких по всему телу. Вот она:
С3032 Н4816 О872 N780 S8 Fe4
Чтобы представить себе наглядно общую схему строения белка, скажем лишь, что его молекула напоминает нитку, унизанную разноцветными бусинами. «Бусины» называются аминокислотами. В белках встречается, как правило, 20 аминокислот; в нашей схеме это означает, что «бусины» могут быть двадцати разных цветов. Каждая аминокислота имеет своё название: например, глицин, аланин, лейцин, валин и т. д. Белки разного размера включают в себя от нескольких десятков до нескольких сотен и даже тысяч аминокислот. В среднем длина белка — около 300 аминокислот. «Бусины»-аминокислоты могут связываться друг с другом и образовывать цепочку «бус» — белок.
Когда человек съедает, допустим, бифштекс, содержащиеся в бифштексе белки — «бусы» — перевариваются и распадаются на отдельные «бусины». Из них организм человека строит уже свои собственные белки.
Как вы думаете, сколькими способами можно нанизать на нитку длиной в 100 бусин бусины 20 цветов? 20100 способами! Это число со 130 нулями! Представить такое число невозможно: во всей Вселенной не найдётся такого количества элементарных частиц. Сколько же различных белков с совершенно разными свойствами может построить природа! Недаром белки считают самыми сложными молекулами.
Однако хитрости устройства молекулы белка не исчерпываются рассказанным. Прямая нитка бус — это только первичная структура белка. Аминокислотная цепочка способна изгибаться, «бусины» притягиваются друг к другу. Цепочка закручивается в спираль, или нечто вроде гармошки, или что-то ещё посложнее, — это вторичная структура. Но и этим дело не заканчивается. Спираль, как волшебная змея, сворачивается ещё и ещё, закручиваясь в узел, клубок или шарик (глобулу). Это третичная структура. У некоторых белков устройство ещё сложнее — отдельные клубки собираются вместе по 2, 3, 4 (и даже больше) штуки. Они крепко прилипают друг к другу и дальше работают совместно. (Гемоглобин, о котором мы уже упомянули, именно так и устроен.) Это четвертичная структура.
«Клубок» можно легко размотать, а «пружину» — раскрутить. Такой процесс называют денатурацией. Во время денатурации свойства белка сильно изменяются. Зачем человек, например, разогревает или готовит себе пищу? Отчего бы не поглощать её сырой? Дело в том, что при варке, допустим, того же яйца яичный белок денатурирует — из слизистой жидкости превращается в плотную белую массу. При полной денатурации «клубок» превращается в «проволоку» — тогда становится очень удобно «резать её на куски» (аминокислоты), что и делает желудочный сок со съеденной яичницей. Сырое яйцо или мясо переварить гораздо труднее.
Живое существо, чьи белки денатурировали, умирает. При температуре тела выше 42° С белки человеческого тела не выдерживают и начинают денатурировать, человек погибает. Размотать белковый «клубок» можно не только при высокой температуре, но и с помощью облучения, холода, яда, высушивания, а также многими другими способами.
Если белок при «раскручивании» не распался на отдельные «бусины», то он может вновь скрутиться в «клубок». Происходит ренатурация.
Теперь посмотрим, какую роль играют белки в организме. Мы можем без преувеличения сказать: самую важную. Из белков строится всё наше тело. У каждого человека свой набор белков (исключая близнецов (см. ст. «Близнецы»), у которых он одинаковый). Чем в более дальнем родстве между собой находятся люди, тем более различен их белковый состав. Точно так же и во всей живой природе: у слона и человека гораздо больше похожих белков, чем у человека и гриба подберёзовика. Каждый белок определяет какое-нибудь свойство организма: цвет глаз, волос, строение внутренних органов и т. д.
Но не следует воспринимать белки как неподвижные «кирпичи», составляющие организм. В том-то и заключается основное чудесное свойство белков, что это не «кирпичи» организма, а скорее «шестерёнки», «маятники» и «колёсики». Работая, каждый белок частично раскручивается (денатурирует), а готовясь к работе, закручивается (ренатурирует). Так же работает ружьё: оно стреляет, когда изменяется положение курка, а затем курок снова надо взводить."
Например, один из белков сетчатки глаза — зрительный пурпур (родопсин) — «раскручивается» под действием света (при этом он выцветает). А в темноте он восстанавливается (см. ст. «Органы чувств»). Благодаря этому процессу в конечном итоге мы видим свет.
Есть белки, точно так же воспринимающие тепло, запах, вкус, механические колебания. Раздражители «дёргают» за кончик белкового «клубка», начиная его разматывать. В результате возбуждение передаётся нервным клеткам.
По такому же принципу работает и уже упомянутый нами транспортный белок гемоглобин, разносящий по нашему телу кислород. Этот белок любопытен тем, что содержит железо, необходимое ему для работы. Всего в организме человека содержится 4—5 г железа. Захватив кислород, гемоглобин частично «раскручивается», а затем, доставив его в нужное место, «закручивается» обратно, отдавая кислород для дыхания окружающим тканям.
Любопытным образом работают другие транспортные белки, которые переносят разные вещества сквозь клеточную мембрану. Крупные молекулы в отличие, например, от молекул воды не могут проскочить сквозь эту мембрану. Транспортные белки в закрученном состоянии можно отчасти сравнить по форме со сложной вычурной рюмкой или бокалом, торчащим вовне из мембраны. Форма «бокала» идеально подходит под какое-то одно конкретное вещество. Как только оно заполняет «бокал», он автоматически поворачивается внутрь клетки и там освобождается от содержимого. Так в клетку переносится, например, глюкоза.
Точно так же — как футляр к инструменту — подходят к проникшим в организм чужеродным белкам белки-антитела, своеобразные «стражники» организма. Захватывая чужие белки, они выбрасывают их из организма. Антитела охраняют человека от возбудителей болезней — бактерий, вирусов. К сожалению, эти «охранники» организма «слепы», и если, например, человеку пересадить вместо повреждённой здоровую, но чужую почку, антитела атакуют её и тем самым губят человека.
Мы не сможем в небольшом разделе подробно рассказать о всей той разнообразной работе, которую выполняют белки. Остановимся на ещё одной их роли в организме, также очень важной.
В организме каждую секунду протекают миллиарды химических изменений и превращений. Чем выше температура, тем быстрее идёт реакция (даже сахар быстрее растворяется в горячем чае). Но при температурах 40—45° С, как мы знаем, большинство белков денатурирует. А ведь при таких низких температурах необходимые организму реакции почти не идут! Как же быть? Нужны особые белки, которые ускоряли бы ход реакций.
И такие белки в природе существуют. Они называются ферментами. Поднимается ли тесто на дрожжах, исчезает ли у подрастающего головастика хвост, или хищное растение росянка переваривает комара — нигде не обошлось без ферментов. Они ускоряют скорость реакций в миллионы, а иногда в десятки миллиардов раз.
Жизнь без ферментов была бы невозможна, поскольку химические реакции в клетке шли бы слишком медленно или не шли бы вовсе. При нагревании первыми из белков разрушаются ферменты, поэтому непродолжительный, но сильный нагрев убивает большинство живых существ. Их ферменты денатурируют, а без них организм перестаёт работать.
Каждый фермент годится только для своей, одной-единственной реакции. Можно себе представить, какое бесчисленное множество ферментов нужно для нормальной работы организма!
Как работает белок-фермент? По уже знакомому нам принципу. В «клубке» белка-фермента есть «ямка», куда как раз аккуратно ложатся молекулы тех веществ, которым фермент должен «устроить встречу». Фермент как бы узнаёт «свои» молекулы. «Ямка»
называется активным центром фермента. Используем ещё одно сравнение: нужные вещества подходят к ферменту, как ключ к замку. Но замок этот «с секретом». Он сам изменяется, подстраиваясь под «ключ», т. е., как и в приведённых выше примерах, частично «.раскручивается», денатурирует. В качестве аналогии можно привести, например, одежду. Она подогнана под размер тела человека, но при надевании форма её изменяется.
Не следует думать, что вещества подолгу задерживаются в активном центре фермента. Иногда сквозь эту «ямку» за минуту успевает проскочить 5 млн молекул реагирующих веществ! (Иные, впрочем, работают «медленно» — с десяток «оборотов» в секунду.)
Фермент может работать и вне организма. Например, во многие стиральные порошки сейчас добавляют ферменты, которые прекрасно справляются со своей ролью — удаляют с белья пятна грязи. Нужны ферменты и в пищевой индустрии. Каждый год мировая промышленность для разных целей производит сотни тысяч тонн ферментов.
Как мы видим, белок — это действительно основа жизни, и где его нет — жизнь невозможна.
УГЛЕВОДЫ
Картофельные клубни (крахмал), пищевой сахар (сахароза), бумага, на которой напечатана эта книга (целлюлоза), — всё это углеводы или почти чистые углеводы. Все они состоят только из углерода, кислорода и водорода, при этом соотношение атомов водорода и кислорода в них такое же, как в молекулах воды. Получается, что состоят они из «угля» (т. е. углерода) и воды — отсюда и их название.
ГЛЮКОЗА. Пищевой сахар, сахароза, — соединение глюкозы и фруктозы.
Глюкоза — пожалуй, самый известный из углеводов. В организме любого животного должно постоянно содержаться определённое её количество (в крови человека — около 15 г). Организм «сжигает» глюкозу, превращая её в углекислоту и воду, и таким образом получает энергию для всех идущих в нём процессов.
Некоторые лягушки нашли применение глюкозе в своём организме — любопытное, хотя и гораздо менее важное. В зимнее время иногда можно найти лягушек, вмёрзших в ледяные глыбы, но после оттаивания земноводные оживают. Как же они ухитряются не замёрзнуть насмерть? Оказывается, с наступлением холодов в крови лягушки в 60 раз увеличивается количество глюкозы. Это мешает образованию внутри организма кристалликов льда.
КРАХМАЛ И ГЛИКОГЕН. Хранить глюкозу в чистом виде живым организмам довольно обременительно: её не слишком большие молекулы легко «разбегаются» из клеток. Как грибники для хранения нанизывают грибы на нитки, так и организмы про запас составляют «бусы» из молекул глюкозы. «Нанизывать» глюкозу в виде бус можно разными способами. При этом получаются разные вещества.
Растения запасают углеводы в виде крахмала, а животные и грибы — в виде более легко растворимого гликогена. Известно, что если капнуть на кусочек хлеба или в крахмальный раствор немного йода, они окрасятся в синий цвет. Такое окрашивание при взаимодействии с йодом даёт крахмал. А гликоген с йодом даёт красное окрашивание.
ЦЕЛЛЮЛОЗА. Целлюлоза (клетчатка) — самое распространённое органическое вещество. Её молекула тоже имеет вид «бус», составленных из молекул глюкозы. В одной «нитке» бус около 10 тыс. «бусин». «Нитки» эти отличаются большой прочностью (в отличие от крахмала и гликогена).
Целлюлоза — основная часть древесины. Из неё состоит бумага, хлопчатобумажная ткань, вата. Казалось бы, целлюлоза — почти неисчерпаемый источник пищи для всего живого. Но человек и большинство животных питаться ею не могут, т. к. целлюлоза почти не поддаётся расщеплению. Усваивать её умеют только некоторые микроорганизмы и грибы. Именно они постепенно превращают в труху мёртвые деревья. Животные (например, термиты, травоядные звери), которые поедают целлюлозу, могут переваривать её только с помощью бактерий и простейших, живущих в их желудке и кишечнике. Если эти микробы погибнут — животное умрёт от голода.
ХИТИН. По химическому строению и своему значению для живых организмов хитин близок к целлюлозе. Из хитина, в частности, строится наружный скелет членистоногих, а также клеточная оболочка большинства грибов.
ЖИРЫ И ЛИПИДЫ. Одни вещества, смешиваясь с водой, равномерно в ней растворяются (их называют гидрофильными, т. е. «любящими воду»), другие, как их ни перемешивай, останутся «сами по себе» (их зовут гидрофобными, т. е. «ненавидящими воду»). А что произойдёт, если «сшить» две молекулы — любящую «купаться» и не желающую это делать?
Прежде чем ответить на этот вопрос, вспомним об одном любопытном наблюдении. Учёные как-то изучали поведение в неволе странного создания — двухголовой змеи. Однажды произошёл забавный случай: у одной из голов, видимо, возникло желание нырнуть в воду, а другая голова этому воспротивилась. После короткой «борьбы» змея всё же окунулась в воду, но
« гидрофобная» голова с отвращением держалась над поверхностью воды.
Примерно так же ведёт себя молекула, имеющая
«водолюбивую» головку и «водобоязненный» хвост (чаще два или три «хвоста»). Именно так устроены молекулы обыкновенного мыла, молекулы жиров и липидов, о которых мы рассказываем. Проще всего таким молекулам расположиться по границе раздела сред, например воды и воздуха. «Хвосты» при этом направить в воздух, а «головки» — в воду. Ну а если кругом вода? Молекулы находят оригинальный выход из положения. Они собираются в плоский слой толщиной в две молекулы. При этом «головки» обращены к воде, а «хвосты» «довольствуются собственным обществом».
То, что мы получили, — это и есть липидная мембрана, окутывающая все клетки живых организмов и разделяющая их изнутри на «отсеки» (см. ст. «Клетка»).
Помимо этой своей роли, самой важной, липиды и жиры выполняют ещё несколько серьёзных задач. Из 10 кг жира можно получить 11 кг воды. Этим пользуются «корабли пустыни» — верблюды — во время
Строение клеточной мембраны.
длинных безводных переходов; сурки, медведи и другие животные во время зимней спячки. В это время они постепенно «пьют» свой накопленный жир.
Киты, тюлени, моржи, живущие в холодной воде полярных морей, защищаются от холода с помощью толстого жирового слоя. Слой китового жира (ворвани) достигает метра в толщину!
И наконец, запасающая роль жиров. Жиры
«хранят энергию» вдвое более экономно, чем углеводы (из каждого грамма жиров можно извлечь вдвое больше энергии, чем из такого же количества углеводов). Всем известно, что когда человек потребляет слишком много углеводов, например сладостей, организм превращает углеводы пищи в жиры и «откладывает про запас». Точно такие же жировые «запасы» хранятся обычно в семенах растений.
АТФ
Представьте, что у вас в руках множество разных заводных игрушек. Если все их завести ключом, а потом привести в движение, мы увидим целый «мирок», живущий своей жизнью. Игрушечные куры будут деловито клевать воображаемое зерно, собаки — «служить», автомобили — разъезжать взад-вперёд, лягушки — прыгать. Но все эти действия, несмотря на их внешние различия, запущены одним и тем же механизмом, благодаря одному и тому же повороту ключа.
Что-то похожее мы видим в живой клетке с её сотнями и тысячами разнообразных, одновременно идущих процессов. Роль такого «механизма» здесь играет вещество. Оно называется аденозинтрифосфорной кислотой, а если коротко — АТФ. Молекулу АТФ можно сравнить с заведённым, но не пущенным моторчиком игрушки. Когда возникает необходимость, АТФ «срабатывает» и отщепляет от себя фосфорную кислоту. При этом выделяется сравнительно много энергии. Теперь «мотор» надо заводить снова.
Когда в клетке «сжигаются» органические вещества, за счёт выделенной энергии «заводятся» огромные количества молекул-«моторчиков». Без АТФ организм не смог бы воспользоваться энергией, выделенной при «сжигании» в клетке Сахаров, жиров и т. д. Образно говоря, АТФ — это единственная энергетическая «валюта», которая принимается во всех клеточных «банках». В сравнении с «крупными купюрами» (молекулами жиров, Сахаров) это — мелкая разменная монета. Потому-то она и удобна для разнообразных «платежей» (химических реакций).
Имеющейся в клетке АТФ хватает ненадолго. Например, у человека в клетке мышцы АТФ хватает примерно на 30 сокращений. Поэтому наряду с расходом АТФ должна постоянно восстанавливаться. У животных, растений и грибов для этого в каждой клетке работают специальные «силовые станции» — митохондрии (см. ст. «Клетка»).
ВИТАМИНЫ
Сейчас трудно найти человека, не слышавшего слова «витамин», а между тем до последней четверти XIX в. люди не подозревали об их существовании. В 1881 г. русский учёный Николай Лунин приготовил искусственное «молоко», т. е. смесь всех тех белков, жиров, углеводов,
солей, которые содержатся в молоке, и этой смесью стал кормить мышей. Через некоторое время все подопытные мыши погибли. Из опыта стало ясно, что в природной пище содержатся какие-то необходимые вещества, создать которые организм сам по себе не может. Тридцать лет спустя их назвали «витаминами». Сегодня их насчитывают несколько десятков. Это вещества самой разной природы. В организме витамины не служат ни «стройматериалом», ни «топливом» — они регулируют обмен веществ. Расскажем о некоторых из них.
ВИТАМИН С (аскорбиновая кислота). Недостаток этого витамина в организме человека приводит к тяжёлому заболеванию — цинге. В старину цингу считали заразной болезнью. Часто страдали ею участники далёких плаваний и полярных экспедиций, от неё умирали заключённые концлагерей. Во время одной из экспедиций Христофора Колумба часть экипажа заболела цингой. Умирающие моряки попросили высадить их на каком-нибудь острове, чтобы они могли там спокойно умереть. Через несколько месяцев на обратном пути корабли Колумба вновь подошли к берегу этого острова. Каково же было изумление прибывших, когда они встретили здесь своих товарищей живыми и здоровыми! Остров назвали «Кюрасао» (по-португальски это означает «оздоровляющий»). От гибели моряков спасли росшие на острове фрукты, в изобилии содержащие витамин С.
Признаки болезни — головокружение, слабость, красная сыпь на коже, кровоточивость дёсен, расшатывание зубов. Цинга описана во многих художественных произведениях, например в рассказе Джека Лондона «Ошибка Господа Бога» о золотоискателях Аляски:
«"Что у вас тут? — спросил Смок одного из лежащих... — Оспа, что ли?" Вместо ответа человек показал на свой рот, с усилием растянул вспухшие губы, и Смок невольно отшатнулся. «Цинга», — негромко сказал он Малышу, и больной кивком подтвердил диагноз. «Еды хватает?» — спросил Малыш. "Ага, — ответил человек с другой койки, — можете взять. Еды полно"».
Природные средства для предотвращения цинги — шиповник, перец, смородина, цитрусовые.
ВИТАМИН А. При недостатке этого витамина у человека развивается болезнь под названием «куриная слепота». Он ничего не видит в сумерках, натыкается на стены. Средства от этой болезни — печень или рыбий жир. Причём в каждом килограмме печени белого медведя накапливается столько витамина А, что его хватило бы человеку на добрых сорок лет! Такое количество витамина может вызвать тяжёлое, даже смертельное отравление. Есть предположение, что от такого отравления погибла экспедиция полярного исследователя Андре. Как видим, злоупотреблять витаминами не стоит.
Морковь, жёлтые сорта помидоров содержат оранжевые кристаллы каротина, который в организме превращается в витамин А. Правда, для такого превращения необходимо присутствие в пище жира (поэтому в тёртую морковь, например, добавляют масло или сметану).
ВИТАМИН Д. При его недостатке развивается рахит, особенно часто — у детей. В городах Англии в конце XVIII в. население целых кварталов страдало этой болезнью. Поэтому рахит прозвали «английской болезнью». При рахите в костях не откладывается известь, они остаются нетвёрдыми, ноги и позвоночник уродливо изгибаются. Помогают от рахита загорание под прямыми солнечными лучами и всё тот же рыбий жир.
ВИТАМИН B1. При нехватке этого витамина человек заболевает болезнью бе'ри-бе'ри (в переводе с сингальского — «большая слабость»). Оказываются поражены нервы, у больного появляется «походка на цыпочках». В Китае эту болезнь знают уже две тысячи лет. В 1897 г. голландский врач X. Эйхман вызвал бери-бери у кур, кормя их варёным рисом, очищенным от отрубей. Стоило добавить в птичий корм отруби, как болезнь проходила.
Людям в тех же целях полезно есть хлеб из муки грубого помола, а также из ржаной муки.
ВИТАМИН РР (никотиновая кислота). В отличие от ядовитого никотина его химическая «родственница», никотиновая кислота, — полезный витамин. Её нехватка вызывает заболевание пеллагрой, признаки которой — розовые пятна на коже (как от солнечных ожогов), воспаление слизистых оболочек рта, желудка.
Никотиновая кислота есть в пивных дрожжах, мясе, гречневой каше.
Мы рассказали лишь о немногих из важнейших витаминов. Так же, как перечисленные, необходимы человеку витамины Р, В2, B6, B12, Е, К и другие. Заметим, что многие из этих веществ витаминами называют лишь условно — организм человека может их создать, но не всегда. Часто для этого нужно определённое «сырьё» (т. е. некоторые вещества в пище). A B12 создаётся микробами, живущими в кишечнике, и недостаток его возникает, если эти микробы убиты антибиотиками.
У каждого живого существа — свой «список» витаминов. То, что является витамином для человека, может не быть таковым, например, для собаки. Зато ей могут быть необходимы другие витамины, человеку не нужные.
Источник: Мир Энциклопедий Аванта+
Авторское право на материал
Копирование материалов допускается только с указанием активной ссылки на статью!
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Похожие статьи