21го мая наступит конец света!

Предсказатели
21го мая наступит конец света!


Известный проповедник из Калифорнии Гарольд Кэмпинг заявляет, что второе пришествие наступит 21 мая этого года. По его прогнозам, в этот день, около 18:00, 2% населения Земли немедленно «вознесутся» на небеса, а остальные будут направлены прямиком в ад.

По мнению проповедника, недавние события, такие как землетрясения в Японии, Новой Зеландии и на Гаити, являются предвестниками предстоящего Судного дня.

Он утверждает, что за 70 лет изучения Библии разработал систему, которая использует математику для интерпретации зашифрованных в ней предсказаний. По словам Кэмпинга, конец света придет 21 мая, потому что это будет 722500 дней с 1 апреля 33 года н.э., когда, как он полагает, был распят Христос. Цифра 722500 важна, так как достигается путем двукратного умножения трех священных чисел (5,10 и 17) друг на друга.

Сообщается, Кэмпинг уже не в первый раз предсказывает второе пришествие. Так, 6 сентября 1994 года сотни его слушателей собрались в зале в Аламиде (Калифорния) в тщетном ожидании пришествия Христа.

Отметим, по всей территории США свыше 2 тыс. рекламных плакатов украшены слоганами Гарольда Кэмпинга, среди которых: «Труби тревогу, предупреждай людей!».

MP3-плейер

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
MP3 далеко не единственный аудиоформат, используемый в Web. Однако MP3 стал стандартом де-факто благодаря тому, что легко доступен и не имеет встроенных механизмов защиты.
Купив компакт-диск, не надо получать разрешение выпустившей его фирмы на то, чтобы переписать содержимое на кассету для магнитофона в машине. И никого не волнует, где и на каких устройствах будет прослушана копия той или иной песни. MP3, продолжатель подобной традиции, позволяет свободно переписывать музыкальные файлы с компьютера на любые устройства их воспроизведения.
Изобретенный в 1992 году в институте Фраунгофера (Германия) формат под названием Moving Pictures Experts Group, Layer 3 (экспертная группа по движущимся изображениям, уровень 3), сокращенно MPEG-1, Layer 3, а еще короче — MP3, не казался тогда актуальным и обсуждался лишь в узком кругу специалистов. Главным достоинством MP3 было то, что он обеспечивал более высокую степень сжатия звуковой информации, чем предыдущая версия MPEG, — исходный размер файла удавалось уменьшить приблизительно в восемь раз.
Вскоре после публикации метода кодирования другие люди поняли, что он идеален для сжатия и распространения музыкальных произведений. Качество звучания приближалось к достигаемому на компакт-дисках, а средняя четырехминутная песня сжималась в файл длиной около 4 Мбайт, то есть достаточно короткий для передачи через Интернет или с одного ПК на другой.
Поначалу распространению Интернет-музыки очень мешало отсутствие портативности: никто не хотел быть привязанным к компьютеру, когда слушал записи. В открывшуюся брешь хлынуло множество поставщиков и таких матерых, как «Sony», и совсем еще желторотых, вроде «HanGo», — с предложениями устройств воспроизведения цифровой музыки.
Первой выступила компания «Diamond Multimedia» со своим плейером Rio 300. Rio произвел подлинную революцию в общественном сознании. Он прорубил мощную брешь в глухой стене скепсиса по поводу качества звука в формате MP3. В последующие несколько месяцев звукозаписывающие компании развернули настоящую «охоту на ведьм» в стремлении защитить свои сверхприбыли. Маркетологи из крупных рекорд-лейблов стали шельмовать Rio (и другие аппаратные плейеры) не менее яростно, чем пишущие CD-дисководы. Гиганты музыкальной индустрии быстро смекнули, что MP3 — это серьезная причина для экстренной смены столь удобной до сих пор модели ведения бизнеса. А за этим стоят деньги, и деньги колоссальные…
Вскоре после объявления о выпуске Rio ассоциация звукозаписывающих компаний США обвинила «Diamond» в нарушении изданного в 1992 года Акта о домашней звукозаписи — закона, согласно которому устройства воспроизведения цифровых записей должны снабжаться «антипиратской» системой контроля легальности копий.

Мобильный интернет

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
С момента зарождения глобальной компьютерной сети Интернет прошло более сорока лет. Идея возникла в конце 1950-х годов, когда в США была поставлена задача создать сеть телекоммуникации. И в 1968 году был составлен план развития сети электронно связанных компьютеров АРПАНЕТ (прообраз Интернета) для оповещения о возможной ядерной атаке, а спустя год вступил в действие первый компьютер, предоставляющий клиентам услуги по телекоммуникации. Через три года сеть охватила уже 34 компьютера, размещенных в разных концах страны, а к 1983 году через АРПАНЕТ были соединены более 400 больших компьютеров. Вскоре АРПАНЕТ разделилась на две сети: несекретную военно-промышленную и научно-исследовательскую. Вместе они назывались АРПАИНТЕРНЕТ и включали несколько тысяч серверов.
В начале 1990-х годов Интернет превратился в самую разветвленную и мощную планетарную компьютерную сеть (ее называют информационной супермагистралью) и стал основным каналом международного общения, универсальным средством передачи научной и учебной информации. Тысячи компьютеров образуют локальные сети, они соединяются в региональные, а те, в свою очередь, составляют сегменты глобальной сети, к которой можно подключить каждый компьютер.
С помощью Интернета сегодня широко реализуются услуги электронной почты, обеспечивается доступ к массивам цифровой информации, расположенной в самых дальних точках планеты, к научным документам, в том числе картам, аэро- и космическим снимкам, к электронным каталогам, учебникам и библиотекам. Хотя Интернет — это средство безбумажной передачи информации, о нем написаны уже сотни статей, монографий и учебников на многих языках мира.
Физически базовая сеть представляет собой огромное количество компьютеров, связанных между собой кабелями и способных обмениваться данными. Линии передачи информации могут быть самыми разными: это волоконно-оптические и телефонные кабели, микроволновые или спутниковые системы связи. Как правило, персональные компьютеры отдельных пользователей не выходят прямо в базовую сеть, а присоединяются к специальному узловому компьютеру, который принадлежит организации или частной компании и называется файловым сервером. Он выполняет три функции: на нем хранятся часто используемые программы, а также другая интересная информация, которую можно получить; он играет роль диспетчера — принимает информацию, которую отдельные пользователи желают передать своему адресату, и пересылает ее к нему; он служит как бы шлюзом к другим компьютерным сетям. Таким узловым компьютером может стать, например, компьютер колледжа, подсоединяющий к Интернету компьютеры факультетов, преподавателей или студентов. Каждый узловой компьютер и персональный компьютер пользователя получают в Интернете свой адрес. Адрес включает не менее двух частей: собственный адрес пользователя и адрес узлового компьютера.

Карманный компьютер

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Наиболее перспективным направлением компьютерной промышленности последних лет считается рынок компактных компьютеров, умещающихся в кармане пиджака и при этом не уступающих по мощности и удобству своему настольно-напольному собрату.
Сейчас все более популярным становится симбиоз компьютера и мобильного телефона, называемый «мобильным офисом», который неизбежно станет нашим постоянным спутником жизни.
В его состав может входить много компонентов, но самые главные — ноутбук или карманный компьютер, мобильный телефон с инфракрасным портом и переносной принтер. Вкупе они весят меньше килограмма и позволяют получить доступ к Интернету и электронной почте, редактировать и печатать документы, а также отсылать факсы и фотографии.
Сердце мобильного офиса — карманный компьютер Windows CE, Psion, Palm. Размер его памяти принципиально не важен — большая часть наиболее часто используемых приложений (почта, текстовый редактор) будет работать и в минимальной конфигурации. В компьютер входят последовательный и инфракрасный порты, в ряде моделей — встроенный факс-модем. Вес карманного компьютера очень мал — от 100 до 500 граммов.
Компьютеры Psion могут работать на одних и тех же батареях много дней подряд, и это их самое большое и немаловажное для мобильного офиса достоинство. Palm и Psion не понимают форматов документов Microsoft Office — придется дополнительно покупать пакет программ.
Модели на Windows CE (их выпускают фирмы «Casio», «Hewlett-Packard», «Compaq») наиболее приближены к настольному компьютеру, обладают привычным интерфейсом Windows и понимают форматы документов Office как «родные». Они обладают цветным дисплеем, за что приходится расплачиваться уменьшенным временем работы от батарей (7–10 часов) и высокой ценой.
Фирма «Palm» выпускает карманные компьютеры наименьшего размера, правда, это достигается ценой отказа от пускай маленькой, но клавиатуры. Но после некоторой тренировки писания стилусом (пластиковой палочкой) текст можно вводить даже быстрее, чем с клавиатуры. Для Palm выпускаются дополнительные модули-насадки (например, превращающий Palm в MP3-плейер).

«Умный дом»

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Как ни удивительно звучит — автоматизировать свое жилище намного дешевле, чем провести евроремонт. Для этого не требуется никаких видимых изменений: не надо отрывать обои, долбить бетонные стены и т.п. — все управление происходит по обычным электрическим проводам. Достаточно, чтобы в вашем доме было электричество.
Самый простой набор для автоматизации состоит из устройств трех основных типов. Это контроллер — «мозг» системы, устройство для включения и выключения чего-либо и устройство для плавного включения-выключения света. Каждое устройство включается в обычную розетку. Контроллер так и остается в ней, а к двум другим типам устройств подключаются настольные лампы, кофеварки, чайники, кондиционеры и т.п. В случае с устройствами для управления лампами можно использовать и специальные переходники, вкручиваемые в цоколь лампы.
Достаточно на контроллере задать код дома или квартиры, код устройства, команды для включения-выключения и можно наслаждаться жизнью. Для управления настольными лампами также существуют более «интеллектуальные» устройства, запоминающие уровень освещенности в момент выключения и восстанавливающие его при включении.
Одной из распространенных сегодня технологий автоматизации дома является X10. «Естественно, мы можем подключить музыкальный центр или видеомагнитофон к контроллеру X10, — пишет в журнале «Компьютер-пресс» Алексей Федоров, — только проку от этого будет мало, так как отключенный от сети видеомагнитофон сразу же (или через некоторое время) "забудет" о номерах каналов, а музыкальный центр потеряет настройки на радиостанции. Решение этой проблемы кроется в приобретении устройств, которые могут преобразовывать сигналы X10 в инфракрасные сигналы, схожие с теми, которые посылает обычный пульт дистанционного управления. Таким образом, с обычного контроллера можно будет управлять более "чувствительными" устройствами.

Сотовая связь

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Оказывается, на вопрос, сколько лет телефону, ответить не так-то просто. Судите сами: принцип трансформирования вибрации мембраны от звуковых волн в электрический сигнал, который подлежит в дальнейшем передаче по проводам на расстояние, открыл французский исследователь Шарль Бурсоль в 1854 году. Позже немецкий естествоиспытатель Иоганн Рейс научился передавать по проводам музыкальные звуки. Но передавать речь все не получалось. Наконец, в 1876 году удача улыбнулась американскому изобретателю Александру Беллу, который догадался, что для передачи речи нужен постоянный ток, и разработал примитивный (но работающий) телефонный аппарат.
Выглядел он ужасно: в центре «натюрморта» находился подковообразный магнит с намотанной на него проволокой — никакой эстетики. Оговоримся, что приоритет Белла — это американская версия истории, но некоторые исследователи ее оспаривают, находя в изобретении «русский след». Впрочем, запатентована технология была именно Беллом, да и словом «телефон» мы обязаны ему. С тех пор телефон начал стремительно меняться и внешне и изнутри. В 1920-е годы это был «колокольчик» со съемным громкоговорителем. В 1937 году телефон обзавелся привычной ныне трубкой и вращающимся диском для набора номера. И прожил в таком виде в СССР и в странах Восточной Европы до конца 1980-х. Советская промышленность никогда не выпускала беспроводные телефоны. Мобильность в пределах собственной квартиры решалась установкой длинного, более десяти метров, витого шнура, позволяющего унести телефон в соседнюю комнату.
В начале 1990-х годов появились беспроводные телефоны с кнопочным набором. Постепенно домашние и офисные аппараты, работающие в диапазоне 50 МГц с радиусом действия в несколько десятков метров, были вытеснены 900-мегагерцевыми аппаратами. Последние обеспечивали более высокую помехозащищенность, некоторую защиту от аппаратов-двойников и радиус действия — до нескольких сот метров от базовой станции. Реальный радиус действия сильно зависел от типа помещения, числа бетонных переборок и прочих препятствий. Однако современные 900-мегагерцевые аппараты позволяют комфортно работать в крупном офисе и многоэтажном здании.

Сканеры

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Сканер — это устройство, служащее для ввода в компьютер графических изображений: текстов, рисунков, слайдов, фотографий, чертежей. В большинстве сканеров для преобразования изображения в цифровую форму применяются светочувствительные элементы на основе приборов с зарядовой связью (ПЗС).
Сканеры различаются по механизму сканирования. Существуют системы с подвижным зеркалом, когда оригинал неподвижен, имеющие интегрированную сканирующую головку, и системы с подвижным оригиналодержателем, обладающие механически независимой сканирующей частью.
По способу перемещения считывающей головки и изображения относительно друг друга сканеры подразделяются на ручные, рулонные, планшетные и проекционные. Разновидностью проекционных сканеров являются слайдсканеры, предназначенные для сканирования фотопленок. В высококачественной полиграфии используются барабанные сканеры, в которых в качестве светочувствительного элемента используется фотоэлектронный умножитель.
Принцип работы наиболее распространенного однопроходного планшетного сканера состоит в том, что вдоль сканируемого изображения, расположенного на прозрачном неподвижном стекле, движется сканирующая каретка с источником света. Отраженный свет через оптическую систему сканера, состоящую из объектива и зеркал или призмы, попадает на три расположенных параллельно друг другу фоточувствительных полупроводниковых элемента на основе ПЗС, каждый из которых принимает информацию о компонентах изображения.
Используемый в конструкции того или иного сканера источник света в немалой степени влияет на качество получаемого изображения. В настоящее время используются четыре типа источников света.

Принтеры

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Для распечатки — вывода на бумагу, картон, пленку или на другой материал результатов работы компьютера используют автоматические печатающие устройства — принтеры (от английского print — «печать», «шрифт»).
Весь ассортимент производимых принтеров почти исчерпывается четырьмя принципами работы: принтеры на основе ударных технологий, принтеры на основе электрографических технологий, принтеры на основе струйных технологий, принтеры на основе термических технологий. Остальные способы печати носят узкоспециализированный или экспериментальный характер.
Старейшая технология печати — электрографическая. Первый подобный копировальный аппарат был изобретен еще до Второй мировой войны. Но прошло немало времени, прежде чем на основе этой технологии были созданы принтеры. Принцип их работы заключается в том, что на поверхности светочувствительного узла наводится заряд, соответствующий нужному изображению. Этот заряд притягивает тонерный порошок в соответствующих точках. Затем тонер переносится прямо на бумагу или на промежуточный носитель, с которого уже попадает на бумагу. Тонер буквально припекается к бумаге в специальном нагревателе, чтобы сделать изображение устойчивым.
По способу наведения заряда принтеры этого типа разделяются на лазерные и светодиодные.
Работа лазерных принтеров напоминает процесс ксерокопирования. Разница только в том, что вместо лампы используется тонкий лазерный луч, который попадает на поверхность фотобарабана через зеркальную призму. По мере вращения призмы луч перемешается вдоль барабана, и формируется строка. При повороте барабана происходит смена строк. В результате на поверхности барабана образуются группы электростатических зарядов, соответствующие заданному изображению. Далее тонер подзаряжается и подается на барабан, а изображение переносится на лист бумаги или пленку и закрепляется в электронагревательном устройстве — «печке». Именно поэтому вышедшие из лазерного принтера листы теплые.
Лазерный принтер гарантирует высокое качество печати, работает он быстро и почти бесшумно. Правда, стоимость сменного картриджа, включающего в себя емкость с тонером и сам фотобарабан, довольно высока. Наибольшее распространение получили принтеры, печатающие до 12–16 страниц в минуту, а также более скоростные (20–24 страницы).
Используя тонеры разных цветов, можно получить изображения, похожие на фотографии. Однако скорость цветной печати ниже, а цена одной копии — выше.

Современные телевизоры

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Самым главным техническим достижением XX столетия, имеющим бытовое значение, французы назвали телевизор. В 1,5 раза меньше голосов собрал компьютер, в 2 раза меньше — мобильный телефон.
Современное телевидение, как это часто бывает, родилось из неглавного направления исследований, также, однако, представленного десятками имен. В 1907 году петербургский профессор физики (электроники тогда еще не было) Технологического института Борис Львович Розинг попытался запатентовать электронно-лучевую трубку в качестве приемника. Сначала изображение в электронно-лучевой трубке сканировалось, а затем передавалось принимающей трубке. В 1911 году Розинг усовершенствовал систему синхронизации передатчика и приемника и демонстрировал свой прибор публично, за что получил Золотую медаль Российского технического общества. Однако до бытового телевизора было еще далеко, предстояло решить множество технических проблем. Розинг «покушался» на них и даже пытался в 1925 году в СССР кое-что патентовать, но всех трудностей не преодолел. Это удалось его ученику Владимиру Козьмичу Зворыкину.
Начиная с 1910 года Владимир вел под руководством Розинга исследования в его лаборатории. После революции Зворыкин эмигрировал в США. В фирме «Вестингауз электрик» в Питтсбурге он приступил к реализации давно вынашиваемых идей электронного телевидения. С головой уйдя в работу, Зворыкин уже в 1923 году подал заявку на патент передатчика изображений с электронно-лучевой трубкой, содержащей пластинку, покрытую слоем фотоэлектрического материала. Впоследствии ему пришлось сожалеть о приведенном в заявке описании прибора, так как оно стало предметом длительного судебного разбирательства.

Цифровое спутниковое телевидение

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Передача информации на большие расстояния была и остается одним из самых важных с практической точки зрения применений искусственных спутников Земли. На первом специализированном связном американском спутнике в 1963 году был передатчик мощностью всего в 5 ватт и ненаправленная передающая антенна. Оттого на Земле сигналы спутника удавалось принимать только специальной антенной размером около тридцати метров. Чтобы выделять слабый сигнал на фоне шумов, на входе наземного приемника пришлось установить сложный и дорогой квантовый усилитель, охлаждаемый жидким гелием.
Космическая техника развивалась, и в 1970-х годах стало возможным выводить спутники связи на так называемую геостационарную орбиту, когда спутник как бы подвешен постоянно над одной точкой земной поверхности. Выросла мощность передатчика, а бортовые антенны заменили направленными, способными формировать узкий луч электромагнитной энергии, «освещающий» сравнительно небольшую часть земной поверхности. То есть мощность излучения не разбрасывалась во все стороны, а направлялась в основном адресату.
В качестве параметра, который характеризовал бы не только передатчик, но и антенну, ввели так называемую эквивалентную излучаемую мощность — произведение мощности бортового передатчика и коэффициента усиления передающей антенны (имеется в виду эффект усиления, связанный с тем, что энергия концентрируется и излучается лишь в определенном направлении). Значение эквивалентной мощности достигло сотен, а затем и тысяч ватт. В результате наземные антенны удалось уменьшить в два-три раза, а для усилителя более не требовалось охлаждения жидким гелием. И все же о непосредственном приеме сигнала на домашний телевизор в этот период можно было только мечтать — стоимость приемной станции составляла около миллиона советских рублей.

Современные часы

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
Время быстротечно. Чтобы уловить его ритм, человек придумал часы. Солнечные, лунные и звездные часы — механизм их подсказан самой природой, — на Востоке знали уже в глубокой древности. В V веке до нашей эры с ними познакомились греки, а два столетия спустя — римляне. Но пользоваться природными часами можно было лишь в ясную погоду. Тогда на помощь пришли водяные, огненные и песочные часы.
На рубеже XII–XIII веков появились часы механические. Имя изобретателя неизвестно, но придуманная им конструкция механизма в основных деталях сохранилась до нашего времени — достойный памятник неизвестному гению.
Первые колесные башенные часы начали отмерять почасовым боем время лондонцев на башне Вестминстерского аббатства в 1288 году, а в России они зазвонили на Спасской башне в 1404 году по указу сына Дмитрия Донского великого князя Василия Дмитриевича.
В XV веке часы с гирями украшали интерьеры дворцов, а изобретение пружины в начале XVI века в Нюрнберге позволило заключать механизм в корпус любой формы.
Ко второй половине XV века относятся самые первые упоминания об изготовлении часов с пружинным двигателем, который открыл путь к созданию миниатюрных часов. Источником движущей энергии в пружинных часах служила заведенная и стремящаяся развернуться пружина, которая представляла собой эластичную, тщательным образом закаленную стальную ленту, свернутую вокруг вала внутри барабана. Внешний конец пружины закреплялся за крючок в стенке барабана, внутренний — соединялся с валом барабана. Стремясь развернуться, пружина приводила во вращение барабан и связанное с ним зубчатое колесо, которое, в свою очередь, передавало это движение системе зубчатых колес до регулятора включительно. Конструируя такие часы, мастера должны были решить несколько сложных технических задач. Главная из них касалась работы самого двигателя. Ведь для правильного хода часов пружина должна на протяжении длительного времени воздействовать на колесный механизм с одной и той же силой. Для этого необходимо заставить ее разворачиваться медленно и равномерно. Толчком к созданию пружинных часов послужило изобретение запора, не позволявшего пружине распрямляться сразу. Он представлял собой маленькую щеколду, помещавшуюся в зубья колес и позволявшую пружине раскручиваться так, что одновременно поворачивался весь ее корпус, а вместе с ним — колеса часового механизма. Так как пружина имеет неодинаковую силу упругости на разных стадиях своего разворачивания, первым часовщикам приходилось прибегать к различным хитроумным ухищрениям, чтобы сделать ее ход более равномерным. Позже, когда научились изготовлять высококачественную сталь для часовых пружин, в них необходимость отпала.
Сейчас в недорогих часах пружину просто делают достаточно длинной, рассчитанной примерно на 30–36 часов работы, но при этом рекомендуют заводить часы раз в сутки в одно и то же время. Специальное приспособление мешает пружине при заводе свернуться до конца. В результате ход пружины используется только в средней части, когда сила ее упругости более равномерна.

Цифровая фотокамера

Энциклопедии » 100 ВЕЛИКИХ ЧУДЕС ТЕХНИКИ
В 1989 году фабрика «Свема» выпустила последнюю партию любительской кинопленки формата 8 миллиметров, пять лет назад закрылась последняя лаборатория по проявке этой пленки, а чуть позже из продажи исчезли и все необходимые химикаты… Так, на наших глазах, завершилась эпоха домашней киносъемки и наступила эра любительского видео. Похоже, такая же участь ожидает вскоре и любимую фотографию.
В этом убеждают последние успехи в создании высококачественных и уже не очень дорогих электронных цифровых камер.
Приехав на ежегодную встречу одноклассников, собравшихся со всей страны, можно достать цифровую камеру, внешне похожую на обычный фотоаппарат, и сделать два-три десятка снимков. Однако, усомнившись в композиции какого-то группового кадра, можно быстро решить, не переснять ли этот сюжет. Для этого достаточно посмотреть кадр на жидкокристаллическом дисплее, встроенном в заднюю стенку камеры.
А, возвращаясь домой, можно вынуть из камеры диск памяти размером с кредитную карточку и вставить в свой портативный ноутбук, чтобы на его экране проверить качество изображений в полном формате и цвете. Тут же можно откорректировать снимки. Некоторые осветлить, другим добавить теплых тонов, а у третьих изменить масштаб. Для этого используется программа обработки графических файлов. При желании можно тут же отправить снимок любому бывшему однокласснику…
Описанное выше — уже не фантастика. В итоге от старых навыков фотографу остаются, пожалуй, только манипуляции с объективом да нажатие на спуск. Да и как иначе, если речь идет об изменении самой информационной сущности фотографии — переходе от аналоговых процессов получения и обработки изображений к цифровым?